PySpark:TypeError:condition应该是string或Column

Eda*_*ame 10 python dataframe apache-spark apache-spark-sql pyspark

我试图过滤基于如下的RDD:

spark_df = sc.createDataFrame(pandas_df)
spark_df.filter(lambda r: str(r['target']).startswith('good'))
spark_df.take(5)
Run Code Online (Sandbox Code Playgroud)

但是得到了以下错误:

TypeErrorTraceback (most recent call last)
<ipython-input-8-86cfb363dd8b> in <module>()
      1 spark_df = sc.createDataFrame(pandas_df)
----> 2 spark_df.filter(lambda r: str(r['target']).startswith('good'))
      3 spark_df.take(5)

/usr/local/spark-latest/python/pyspark/sql/dataframe.py in filter(self, condition)
    904             jdf = self._jdf.filter(condition._jc)
    905         else:
--> 906             raise TypeError("condition should be string or Column")
    907         return DataFrame(jdf, self.sql_ctx)
    908 

TypeError: condition should be string or Column
Run Code Online (Sandbox Code Playgroud)

知道我错过了什么吗?谢谢!

use*_*411 25

DataFrame.filter,这是一个别名DataFrame.where,期望一个SQL表达式表达为Column:

spark_df.filter(col("target").like("good%"))
Run Code Online (Sandbox Code Playgroud)

或等效的SQL字符串:

spark_df.filter("target LIKE 'good%'")
Run Code Online (Sandbox Code Playgroud)

我相信你在这里尝试使用RDD.filter哪种方法完全不同:

spark_df.rdd.filter(lambda r: r['target'].startswith('good'))
Run Code Online (Sandbox Code Playgroud)

并且不会受益于SQL优化.


arc*_*nic 5

我已经经历过这个并且已经决定使用 UDF:

from pyspark.sql.functions import udf
from pyspark.sql.types import BooleanType

filtered_df = spark_df.filter(udf(lambda target: target.startswith('good'), 
                                  BooleanType())(spark_df.target))
Run Code Online (Sandbox Code Playgroud)

更具可读性的是使用普通函数定义而不是 lambda