Moo*_*ama 0 google-bigquery amazon-redshift
我们在oracle pl / sql中有以下代码,它们使用Jaro-Winkler计算两个字符串之间的相似度。我们试图做的是,基于两个字符串的相似性找到任何dup。我们的用例是用户可以输入用户信息,例如first_name,last_name,但是有错字,并且我们可以使用的唯一键是first_name,last_name。没有其他用于标识用户的唯一标识符,例如SSN或电子邮件。因此,我们的想法是对first_name,last_name进行自我联接,然后获得相似性分数,并以此为基础来确定dup。
但是,即使有10,000个用户,也将有100,000,000个操作要进行匹配,而我们在oracle db中尝试了这一点,这太慢了。
我们是google-bigquery或Amazon Red-shift的新手。是否有类似这样的教程,如何在我们的数据集中实现自定义功能。
或google-bigquery或Amazon Red Shift已具有类似于oracle的解决方案?
目前的环境无法进行这种概念验证,因此我们喜欢在云中进行此练习。
感谢您的所有帮助。
--http://www.orafaq.com/forum/t/164224/
CREATE OR REPLACE FUNCTION GKN_COMMON.jws -- Jaro-Winkler similarity
(p_string1 IN VARCHAR2,
p_string2 IN VARCHAR2)
RETURN NUMBER
DETERMINISTIC
AS
v_string1 VARCHAR2 (32767);
v_string2 VARCHAR2 (32767);
v_closeness NUMBER := 0;
v_temp VARCHAR2 (32767);
v_comp1 VARCHAR2 (32767);
v_comp2 VARCHAR2 (32767);
v_matches NUMBER := 0;
v_char VARCHAR2 (1);
v_transpositions NUMBER := 0;
v_d_jaro NUMBER := 0;
v_leading NUMBER := 0;
v_d_winkler NUMBER := 0;
v_jws NUMBER := 0;
BEGIN
-- check for null strings:
IF p_string1 IS NULL OR p_string2 IS NULL THEN
RETURN 0;
END IF;
-- remove accents:
v_string1 := translate (p_string1,
'?S?Zs?z?AAA?A??CEEEEIIII??OOO?O?UUUUY?aaa?a??ceeeeiiii???ooo?ouuuuyy??',
'fSEZsezYAAAAAAECEEEEIIIIDNOOOOOOUUUUYBaaaaaaeceeeeiiiioonooooouuuuyy');
v_string2 := translate (p_string2,
'?S?Zs?z?AAA?A??CEEEEIIII??OOO?O?UUUUY?aaa?a??ceeeeiiii???ooo?ouuuuyy??',
'fSEZsezYAAAAAAECEEEEIIIIDNOOOOOOUUUUYBaaaaaaeceeeeiiiioonooooouuuuyy');
-- closeness:
v_closeness := (GREATEST (LENGTH (v_string1), LENGTH (v_string2)) / 2) - 1;
-- find matching characters and transpositions within closeness:
v_temp := v_string2;
FOR i IN 1 .. LENGTH (v_string1) LOOP
IF INSTR (v_temp, SUBSTR (v_string1, i, 1)) > 0 THEN
v_char := SUBSTR (v_string1, i, 1);
IF ABS (INSTR (v_string1, v_char) - INSTR (v_string2, v_char)) <= v_closeness THEN
v_comp1 := v_comp1 || SUBSTR (v_string1, i, 1);
v_temp := SUBSTR (v_temp, 1, INSTR (v_temp, SUBSTR (v_string1, i, 1)) - 1)
|| SUBSTR (v_temp, INSTR (v_temp, SUBSTR (v_string1, i, 1)) + 1);
END IF;
END IF;
END LOOP;
v_temp := v_string1;
FOR i IN 1 .. LENGTH (v_string2) LOOP
IF INSTR (v_temp, SUBSTR (v_string2, i, 1)) > 0 THEN
v_char := SUBSTR (v_string2, i, 1);
IF ABS (INSTR (v_string2, v_char) - INSTR (v_string1, v_char)) <= v_closeness THEN
v_comp2 := v_comp2 || SUBSTR (v_string2, i, 1);
v_temp := SUBSTR (v_temp, 1, INSTR (v_temp, SUBSTR (v_string2, i, 1)) - 1)
|| SUBSTR (v_temp, INSTR (v_temp, SUBSTR (v_string2, i, 1)) + 1);
END IF;
END IF;
END LOOP;
-- check for null strings:
IF v_comp1 IS NULL OR v_comp2 IS NULL THEN
RETURN 0;
END IF;
-- count matches and transpositions within closeness:
FOR i IN 1 .. LEAST (LENGTH (v_comp1), LENGTH (v_comp2)) LOOP
IF SUBSTR (v_comp1, i, 1) = SUBSTR (v_comp2, i, 1) THEN
v_matches := v_matches + 1;
ELSE
v_char := SUBSTR (v_comp1, i, 1);
IF ABS (INSTR (v_string1, v_char) - INSTR (v_string2, v_char)) <= v_closeness THEN
v_transpositions := v_transpositions + 1;
v_matches := v_matches + 1;
END IF;
END IF;
END LOOP;
v_transpositions := v_transpositions / 2;
-- check for no matches:
IF v_matches = 0
THEN RETURN 0;
END IF;
-- Jaro:
v_d_jaro := ((v_matches / LENGTH (v_string1)) +
(v_matches / LENGTH (v_string2)) +
((v_matches - v_transpositions) / v_matches))
/ 3;
-- count matching leading characters (up to 4):
FOR i IN 1 .. LEAST (LENGTH (v_string1), LENGTH (v_string2), 4) LOOP
IF SUBSTR (v_string1, i, 1) = SUBSTR (v_string2, i, 1) THEN
v_leading := v_leading + 1;
ELSE
EXIT;
END IF;
END LOOP;
-- Winkler:
v_d_winkler := v_d_jaro + ((v_leading * .1) * (1 - v_d_jaro));
-- Jaro-Winkler similarity rounded:
v_jws := ROUND (v_d_winkler * 100);
RETURN v_jws;
END jws;
WITH
strings AS
(SELECT NULL string1, NULL string2 FROM DUAL UNION ALL
SELECT 'test' string1, NULL string2 FROM DUAL UNION ALL
SELECT NULL string1, 'test' string2 FROM DUAL UNION ALL
SELECT 'CRATE' string1, 'TRACE' string2 FROM DUAL UNION ALL
SELECT 'MARTHA' string1, 'MARHTA' string2 FROM DUAL UNION ALL
SELECT 'DWAYNE' string1, 'DUANE' string2 FROM DUAL UNION ALL
SELECT 'DIXON' string1, 'DICKSONX' string2 FROM DUAL UNION ALL
SELECT 'Dunningham' string1, 'Cunningham' string2 FROM DUAL UNION ALL
SELECT 'Abroms' string1, 'Abrams' string2 FROM DUAL UNION ALL
SELECT 'Lampley' string1, 'Campley' string2 FROM DUAL UNION ALL
SELECT 'Jonathon' string1, 'Jonathan' string2 FROM DUAL UNION ALL
SELECT 'Jeraldine' string1, 'Gerladine' string2 FROM DUAL UNION ALL
SELECT 'test' string1, 'blank' string2 FROM DUAL UNION ALL
SELECT 'everybody' string1, 'every' string2 FROM DUAL UNION ALL
SELECT 'a' string1, 'aaa' string2 FROM DUAL UNION ALL
SELECT 'Géraldine' string1, 'Gerladine' string2 FROM DUAL UNION ALL
SELECT 'Jérôme' string1, 'Jerome' string2 FROM DUAL UNION ALL
SELECT 'ça' string1, 'ca' string2 FROM DUAL UNION ALL
SELECT 'Üwe' string1, 'Uwe' string2 FROM DUAL)
SELECT string1, string2,
--UTL_MATCH.JARO_WINKLER_SIMILARITY (string1, string2) oracle_jws,
jws (string1, string2) my_jws
FROM strings
ORDER BY my_jws DESC
Run Code Online (Sandbox Code Playgroud)
请检查以下示例,
该示例适用于带有标准SQL的BigQuery(请选中“ 启用标准SQL”),并使用JS用户定义的函数
CREATE TEMPORARY FUNCTION similariry(Name1 STRING, Name2 STRING)
RETURNS FLOAT64
LANGUAGE js AS """
var _extend = function(dst) {
var sources = Array.prototype.slice.call(arguments, 1);
for (var i=0; i<sources.length; ++i) {
var src = sources[i];
for (var p in src) {
if (src.hasOwnProperty(p)) dst[p] = src[p];
}
}
return dst;
};
var Levenshtein = {
/**
* Calculate levenshtein distance of the two strings.
*
* @param str1 String the first string.
* @param str2 String the second string.
* @return Integer the levenshtein distance (0 and above).
*/
get: function(str1, str2) {
// base cases
if (str1 === str2) return 0;
if (str1.length === 0) return str2.length;
if (str2.length === 0) return str1.length;
// two rows
var prevRow = new Array(str2.length + 1),
curCol, nextCol, i, j, tmp;
// initialise previous row
for (i=0; i<prevRow.length; ++i) {
prevRow[i] = i;
}
// calculate current row distance from previous row
for (i=0; i<str1.length; ++i) {
nextCol = i + 1;
for (j=0; j<str2.length; ++j) {
curCol = nextCol;
// substution
nextCol = prevRow[j] + ( (str1.charAt(i) === str2.charAt(j)) ? 0 : 1 );
// insertion
tmp = curCol + 1;
if (nextCol > tmp) {
nextCol = tmp;
}
// deletion
tmp = prevRow[j + 1] + 1;
if (nextCol > tmp) {
nextCol = tmp;
}
// copy current col value into previous (in preparation for next iteration)
prevRow[j] = curCol;
}
// copy last col value into previous (in preparation for next iteration)
prevRow[j] = nextCol;
}
return nextCol;
}
};
var the_Name1;
try {
the_Name1 = decodeURI(Name1).toLowerCase();
} catch (ex) {
the_Name1 = Name1.toLowerCase();
}
try {
the_Name2 = decodeURI(Name2).toLowerCase();
} catch (ex) {
the_Name2 = Name2.toLowerCase();
}
return 1 - Levenshtein.get(the_Name1, the_Name2) / the_Name1.length;
""";
WITH strings AS (
SELECT NULL string1, NULL string2 UNION ALL
SELECT 'test' string1, NULL string2 UNION ALL
SELECT NULL string1, 'test' string2 UNION ALL
SELECT 'CRATE' string1, 'TRACE' string2 UNION ALL
SELECT 'MARTHA' string1, 'MARHTA' string2 UNION ALL
SELECT 'DWAYNE' string1, 'DUANE' string2 UNION ALL
SELECT 'DIXON' string1, 'DICKSONX' string2 UNION ALL
SELECT 'Dunningham' string1, 'Cunningham' string2 UNION ALL
SELECT 'Abroms' string1, 'Abrams' string2 UNION ALL
SELECT 'Lampley' string1, 'Campley' string2 UNION ALL
SELECT 'Jonathon' string1, 'Jonathan' string2 UNION ALL
SELECT 'Jeraldine' string1, 'Gerladine' string2 UNION ALL
SELECT 'test' string1, 'blank' string2 UNION ALL
SELECT 'everybody' string1, 'every' string2 UNION ALL
SELECT 'a' string1, 'aaa' string2 UNION ALL
SELECT 'Géraldine' string1, 'Gerladine' string2 UNION ALL
SELECT 'Jérôme' string1, 'Jerome' string2 UNION ALL
SELECT 'ça' string1, 'ca' string2 UNION ALL
SELECT 'Üwe' string1, 'Uwe' string2
)
SELECT string1, string2, similariry(string1, string2) my_sim
FROM strings
ORDER BY my_sim DESC
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
258 次 |
最近记录: |