Rus*_*mov 33 python java directed-acyclic-graphs apache-spark airflow
你好地球人!我正在使用Airflow来安排和运行Spark任务.我此时发现的只是Airflow可以管理的python DAG.
DAG示例:
spark_count_lines.py
import logging
from airflow import DAG
from airflow.operators import PythonOperator
from datetime import datetime
args = {
'owner': 'airflow'
, 'start_date': datetime(2016, 4, 17)
, 'provide_context': True
}
dag = DAG(
'spark_count_lines'
, start_date = datetime(2016, 4, 17)
, schedule_interval = '@hourly'
, default_args = args
)
def run_spark(**kwargs):
import pyspark
sc = pyspark.SparkContext()
df = sc.textFile('file:///opt/spark/current/examples/src/main/resources/people.txt')
logging.info('Number of lines in people.txt = {0}'.format(df.count()))
sc.stop()
t_main = PythonOperator(
task_id = 'call_spark'
, dag = dag
, python_callable = run_spark
)
Run Code Online (Sandbox Code Playgroud)
问题是我不擅长Python代码并且用Java编写了一些任务.我的问题是如何在python DAG中运行Spark Java jar?或者也许还有其他方式吗?我发现spark提交:http
://spark.apache.org/docs/latest/submitting-applications.html
但我不知道如何将所有内容连接在一起.也许有人之前使用它并且有工作的例子.感谢您的时间!
Tag*_*gar 21
气流版本1.8(今天发布),有
SparkSQLHook代码 - https://github.com/apache/incubator-airflow/blob/master/airflow/contrib/hooks/spark_sql_hook.py
SparkSubmitHook代码 - https://github.com/apache/incubator-airflow/blob/master/airflow/contrib/hooks/spark_submit_hook.py
请注意,这两个新的Spark运算符/挂钩在1.8版本的"contrib"分支中,因此没有(很好)记录.
因此,您可以使用SparkSubmitOperator提交您的Java代码以执行Spark.
use*_*411 19
你应该可以使用BashOperator.保持代码的其余部分,导入所需的类和系统包:
from airflow.operators.bash_operator import BashOperator
import os
import sys
Run Code Online (Sandbox Code Playgroud)
设置所需的路径:
os.environ['SPARK_HOME'] = '/path/to/spark/root'
sys.path.append(os.path.join(os.environ['SPARK_HOME'], 'bin'))
Run Code Online (Sandbox Code Playgroud)
并添加运算符:
spark_task = BashOperator(
task_id='spark_java',
bash_command='spark-submit --class {{ params.class }} {{ params.jar }}',
params={'class': 'MainClassName', 'jar': '/path/to/your.jar'},
dag=dag
)
Run Code Online (Sandbox Code Playgroud)
您可以使用Jinja模板轻松扩展它以提供其他参数.
您当然可以通过替换bash_command适用于您的情况的模板来针对非Spark方案进行调整,例如:
bash_command = 'java -jar {{ params.jar }}'
Run Code Online (Sandbox Code Playgroud)
和调整params.
CTi*_*PKA 11
SparkSubmitOperator在kubernetes(minikube实例)上有一个Spark 2.3.1 的使用示例:
"""
Code that goes along with the Airflow located at:
http://airflow.readthedocs.org/en/latest/tutorial.html
"""
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.contrib.operators.spark_submit_operator import SparkSubmitOperator
from airflow.models import Variable
from datetime import datetime, timedelta
default_args = {
'owner': 'user@mail.com',
'depends_on_past': False,
'start_date': datetime(2018, 7, 27),
'email': ['user@mail.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
# 'queue': 'bash_queue',
# 'pool': 'backfill',
# 'priority_weight': 10,
'end_date': datetime(2018, 7, 29),
}
dag = DAG(
'tutorial_spark_operator', default_args=default_args, schedule_interval=timedelta(1))
t1 = BashOperator(
task_id='print_date',
bash_command='date',
dag=dag)
print_path_env_task = BashOperator(
task_id='print_path_env',
bash_command='echo $PATH',
dag=dag)
spark_submit_task = SparkSubmitOperator(
task_id='spark_submit_job',
conn_id='spark_default',
java_class='com.ibm.cdopoc.DataLoaderDB2COS',
application='local:///opt/spark/examples/jars/cppmpoc-dl-0.1.jar',
total_executor_cores='1',
executor_cores='1',
executor_memory='2g',
num_executors='2',
name='airflowspark-DataLoaderDB2COS',
verbose=True,
driver_memory='1g',
conf={
'spark.DB_URL': 'jdbc:db2://dashdb-dal13.services.dal.bluemix.net:50001/BLUDB:sslConnection=true;',
'spark.DB_USER': Variable.get("CEDP_DB2_WoC_User"),
'spark.DB_PASSWORD': Variable.get("CEDP_DB2_WoC_Password"),
'spark.DB_DRIVER': 'com.ibm.db2.jcc.DB2Driver',
'spark.DB_TABLE': 'MKT_ATBTN.MERGE_STREAM_2000_REST_API',
'spark.COS_API_KEY': Variable.get("COS_API_KEY"),
'spark.COS_SERVICE_ID': Variable.get("COS_SERVICE_ID"),
'spark.COS_ENDPOINT': 's3-api.us-geo.objectstorage.softlayer.net',
'spark.COS_BUCKET': 'data-ingestion-poc',
'spark.COS_OUTPUT_FILENAME': 'cedp-dummy-table-cos2',
'spark.kubernetes.container.image': 'ctipka/spark:spark-docker',
'spark.kubernetes.authenticate.driver.serviceAccountName': 'spark'
},
dag=dag,
)
t1.set_upstream(print_path_env_task)
spark_submit_task.set_upstream(t1)
Run Code Online (Sandbox Code Playgroud)
此外,您需要创建一个新的spark连接或使用额外的字典编辑现有的'spark_default' {"queue":"root.default", "deploy-mode":"cluster", "spark-home":"", "spark-binary":"spark-submit", "namespace":"default"}:
