O.r*_*rka 16 python plot graph matplotlib networkx
我正在尝试创建一个线性网络图Python(使用(尽管有matplotlib,networkx但有兴趣bokeh),在概念上类似于下面的一个.
如何pos在Python中使用networkx?有效地构建这个图形图? 我想将它用于更复杂的示例,所以我觉得对这个简单示例的位置进行硬编码是没有用的:(.networkx有解决方案吗?
pos(字典,可选) - 以节点为键,位置为值的字典.如果未指定,则将计算弹簧布局定位.有关计算节点位置的函数,请参阅networkx.layout.
我还没有看到任何有关如何实现这一目标的教程,networkx这就是为什么我认为这个问题将成为社区的可靠资源.我已经广泛地完成了这些networkx教程,没有像这样的东西.如果networkx不仔细使用这个pos论点,那么这种网络的布局就无法解释......我相信这是我唯一的选择. https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html文档中的预计算布局似乎都没有很好地处理这种类型的网络结构.
简单示例:
(A)每个外键是图中从左到右移动的迭代(例如,迭代0表示样本,迭代1具有组1-3,与迭代2相同,迭代3具有组1-2等).(B)内的字典包含在该特定迭代当前的分组,和表示当前组的前组的合并的权重(例如,iteration 3已Group 1与Group 2和iteration 4所有的iteration 3's Group 2已进入iteration 4's Group 2但iteration 3's Group 1已被划分.权重总是总和为1.
我的代码为上图的连接w /权重:
D_iter_current_previous = {
1: {
"Group 1":{"sample_0":0.5, "sample_1":0.5, "sample_2":0, "sample_3":0, "sample_4":0},
"Group 2":{"sample_0":0, "sample_1":0, "sample_2":1, "sample_3":0, "sample_4":0},
"Group 3":{"sample_0":0, "sample_1":0, "sample_2":0, "sample_3":0.5, "sample_4":0.5}
},
2: {
"Group 1":{"Group 1":1, "Group 2":0, "Group 3":0},
"Group 2":{"Group 1":0, "Group 2":1, "Group 3":0},
"Group 3":{"Group 1":0, "Group 2":0, "Group 3":1}
},
3: {
"Group 1":{"Group 1":0.25, "Group 2":0, "Group 3":0.75},
"Group 2":{"Group 1":0.25, "Group 2":0.75, "Group 3":0}
},
4: {
"Group 1":{"Group 1":1, "Group 2":0},
"Group 2":{"Group 1":0.25, "Group 2":0.75}
}
}
Run Code Online (Sandbox Code Playgroud)
这就是我在制作图表时发生的事情networkx:
import networkx
import matplotlib.pyplot as plt
# Create Directed Graph
G = nx.DiGraph()
# Iterate through all connections
for iter_n, D_current_previous in D_iter_current_previous.items():
for current_group, D_previous_weights in D_current_previous.items():
for previous_group, weight in D_previous_weights.items():
if weight > 0:
# Define connections using `|__|` as a delimiter for the names
previous_node = "%d|__|%s"%(iter_n - 1, previous_group)
current_node = "%d|__|%s"%(iter_n, current_group)
connection = (previous_node, current_node)
G.add_edge(*connection, weight=weight)
# Draw Graph with labels and width thickness
nx.draw(G, with_labels=True, width=[G[u][v]['weight'] for u,v in G.edges()])
Run Code Online (Sandbox Code Playgroud)
注意:我能想到的唯一另一种方法是matplotlib创建一个散点图,每个刻度表示一次迭代(5包括初始样本),然后用不同的权重将点连接到彼此.这将是一些非常混乱的代码,特别是试图排列标记与连接的边缘......但是,我不确定这networkx是否是最好的方法,或者是否有工具(例如bokeh或plotly)这是为这种类型的绘图而设计的.
Pau*_*sen 12
Networkx拥有适当的绘图设施用于探索性数据分析,它不是制作出版物质量数据的工具,因为我不想进入这里的各种原因.因此,我从头开始重写了代码库的这一部分,并创建了一个名为netgraph的独立绘图模块,可以在这里找到 (就像原版纯粹基于matplotlib).API非常非常相似,并且有很好的文档记录,所以它不应该太难以达到您的目的.
在此基础上,我得到以下结果:
我选择颜色来表示边缘强度,
1)表示负值,
2)更好地区分小值.
但是,您也可以将边宽传递给netgraph(请参阅参考资料netgraph.draw_edges()).
分支的不同顺序是您的数据结构(字典)的结果,表示没有固有顺序.您必须修改数据结构和_parse_input()下面的函数来解决该问题.
码:
import itertools
import numpy as np
import matplotlib.pyplot as plt
import netgraph; reload(netgraph)
def plot_layered_network(weight_matrices,
distance_between_layers=2,
distance_between_nodes=1,
layer_labels=None,
**kwargs):
"""
Convenience function to plot layered network.
Arguments:
----------
weight_matrices: [w1, w2, ..., wn]
list of weight matrices defining the connectivity between layers;
each weight matrix is a 2-D ndarray with rows indexing source and columns indexing targets;
the number of sources has to match the number of targets in the last layer
distance_between_layers: int
distance_between_nodes: int
layer_labels: [str1, str2, ..., strn+1]
labels of layers
**kwargs: passed to netgraph.draw()
Returns:
--------
ax: matplotlib axis instance
"""
nodes_per_layer = _get_nodes_per_layer(weight_matrices)
node_positions = _get_node_positions(nodes_per_layer,
distance_between_layers,
distance_between_nodes)
w = _combine_weight_matrices(weight_matrices, nodes_per_layer)
ax = netgraph.draw(w, node_positions, **kwargs)
if not layer_labels is None:
ax.set_xticks(distance_between_layers*np.arange(len(weight_matrices)+1))
ax.set_xticklabels(layer_labels)
ax.xaxis.set_ticks_position('bottom')
return ax
def _get_nodes_per_layer(weight_matrices):
nodes_per_layer = []
for w in weight_matrices:
sources, targets = w.shape
nodes_per_layer.append(sources)
nodes_per_layer.append(targets)
return nodes_per_layer
def _get_node_positions(nodes_per_layer,
distance_between_layers,
distance_between_nodes):
x = []
y = []
for ii, n in enumerate(nodes_per_layer):
x.append(distance_between_nodes * np.arange(0., n))
y.append(ii * distance_between_layers * np.ones((n)))
x = np.concatenate(x)
y = np.concatenate(y)
return np.c_[y,x]
def _combine_weight_matrices(weight_matrices, nodes_per_layer):
total_nodes = np.sum(nodes_per_layer)
w = np.full((total_nodes, total_nodes), np.nan, np.float)
a = 0
b = nodes_per_layer[0]
for ii, ww in enumerate(weight_matrices):
w[a:a+ww.shape[0], b:b+ww.shape[1]] = ww
a += nodes_per_layer[ii]
b += nodes_per_layer[ii+1]
return w
def test():
w1 = np.random.rand(4,5) #< 0.50
w2 = np.random.rand(5,6) #< 0.25
w3 = np.random.rand(6,3) #< 0.75
import string
node_labels = dict(zip(range(18), list(string.ascii_lowercase)))
fig, ax = plt.subplots(1,1)
plot_layered_network([w1,w2,w3],
layer_labels=['start', 'step 1', 'step 2', 'finish'],
ax=ax,
node_size=20,
node_edge_width=2,
node_labels=node_labels,
edge_width=5,
)
plt.show()
return
def test_example(input_dict):
weight_matrices, node_labels = _parse_input(input_dict)
fig, ax = plt.subplots(1,1)
plot_layered_network(weight_matrices,
layer_labels=['', '1', '2', '3', '4'],
distance_between_layers=10,
distance_between_nodes=8,
ax=ax,
node_size=300,
node_edge_width=10,
node_labels=node_labels,
edge_width=50,
)
plt.show()
return
def _parse_input(input_dict):
weight_matrices = []
node_labels = []
# initialise sources
sources = set()
for v in input_dict[1].values():
for s in v.keys():
sources.add(s)
sources = list(sources)
for ii in range(len(input_dict)):
inner_dict = input_dict[ii+1]
targets = inner_dict.keys()
w = np.full((len(sources), len(targets)), np.nan, np.float)
for ii, s in enumerate(sources):
for jj, t in enumerate(targets):
try:
w[ii,jj] = inner_dict[t][s]
except KeyError:
pass
weight_matrices.append(w)
node_labels.append(sources)
sources = targets
node_labels.append(targets)
node_labels = list(itertools.chain.from_iterable(node_labels))
node_labels = dict(enumerate(node_labels))
return weight_matrices, node_labels
# --------------------------------------------------------------------------------
# script
# --------------------------------------------------------------------------------
if __name__ == "__main__":
# test()
input_dict = {
1: {
"Group 1":{"sample_0":0.5, "sample_1":0.5, "sample_2":0, "sample_3":0, "sample_4":0},
"Group 2":{"sample_0":0, "sample_1":0, "sample_2":1, "sample_3":0, "sample_4":0},
"Group 3":{"sample_0":0, "sample_1":0, "sample_2":0, "sample_3":0.5, "sample_4":0.5}
},
2: {
"Group 1":{"Group 1":1, "Group 2":0, "Group 3":0},
"Group 2":{"Group 1":0, "Group 2":1, "Group 3":0},
"Group 3":{"Group 1":0, "Group 2":0, "Group 3":1}
},
3: {
"Group 1":{"Group 1":0.25, "Group 2":0, "Group 3":0.75},
"Group 2":{"Group 1":0.25, "Group 2":0.75, "Group 3":0}
},
4: {
"Group 1":{"Group 1":1, "Group 2":0},
"Group 2":{"Group 1":0.25, "Group 2":0.75}
}
}
test_example(input_dict)
pass
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3636 次 |
| 最近记录: |