Sha*_*ang 6 python match intervals dataframe pandas
我有以下pandas DataFrame:
import pandas as pd
df = pd.DataFrame('filename.csv')
print(df)
order start end value
1 1342 1357 category1
1 1459 1489 category7
1 1572 1601 category23
1 1587 1599 category2
1 1591 1639 category1
....
15 792 813 category13
15 892 913 category5
....
Run Code Online (Sandbox Code Playgroud)
所以,有一个order列各自涵盖许多行,然后从一个范围/间隔start来end为每一行.然后每行标记一定value(例如category1,category2等)
现在我有一个名为的另一个数据帧key_df.它基本上是完全相同的格式:
import pandas as pd
key_df = pd.DataFrame(...)
print(key_df)
order start end value
1 1284 1299 category4
1 1297 1309 category9
1 1312 1369 category3
1 1345 1392 category29
1 1371 1383 category31
....
1 1471 1501 category31
...
Run Code Online (Sandbox Code Playgroud)
我的目标是获取key_df数据帧并检查间隔是否start:end与原始数据帧中的任何行匹配df.如果是,则该行df应标记为key_dfdataframe的value值.
在上面的示例中,数据框df最终会像这样:
order start end value key_value
1 1342 1357 category1 category29
1 1459 1489 category7 category31
....
Run Code Online (Sandbox Code Playgroud)
这是因为如果你看一下key_df,那行
1 1345 1392 category29
Run Code Online (Sandbox Code Playgroud)
间隔1::1345-1392落在1::1342-1357原始区间df.同样,key_df行:
1 1471 1501 category31
Run Code Online (Sandbox Code Playgroud)
对应于第二行df:
1 1459 1489 category7 category31
Run Code Online (Sandbox Code Playgroud)
我不完全确定
(1)如何在熊猫中完成这项任务
(2)如何在熊猫中有效地扩展它
可以从if语句开始,例如
if df.order == key_df.order:
# now check intervals...somehow
Run Code Online (Sandbox Code Playgroud)
但这并没有利用数据帧结构.然后必须按间隔检查,即类似的东西(df.start =< key_df.start) && (df.end => key_df.end)
我被卡住了.在pandas中"间隔"中匹配多个列的最有效方法是什么?(如果满足此条件,则创建新列非常简单)
您可以使用mergewith boolean indexing,但如果DataFrames很大,缩放就会出现问题:
df1 = pd.merge(df, key_df, on='order', how='outer', suffixes=('','_key'))
df1 = df1[(df1.start <= df1.start_key) & (df1.end <= df1.end_key)]
print (df1)
order start end value start_key end_key value_key
3 1 1342 1357 category1 1345.0 1392.0 category29
4 1 1342 1357 category1 1371.0 1383.0 category31
5 1 1342 1357 category1 1471.0 1501.0 category31
11 1 1459 1489 category7 1471.0 1501.0 category31
Run Code Online (Sandbox Code Playgroud)
按评论编辑:
df1 = pd.merge(df, key_df, on='order', how='outer', suffixes=('','_key'))
df1 = df1[(df1.start <= df1.start_key) & (df1.end <= df1.end_key)]
df1 = pd.merge(df, df1, on=['order','start','end', 'value'], how='left')
print (df1)
order start end value start_key end_key value_key
0 1 1342 1357 category1 1345.0 1392.0 category29
1 1 1342 1357 category1 1371.0 1383.0 category31
2 1 1342 1357 category1 1471.0 1501.0 category31
3 1 1459 1489 category7 1471.0 1501.0 category31
4 1 1572 1601 category23 NaN NaN NaN
5 1 1587 1599 category2 NaN NaN NaN
6 1 1591 1639 category1 NaN NaN NaN
7 15 792 813 category13 NaN NaN NaN
8 15 892 913 category5 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)