All*_*iph 40 apache-spark apache-spark-sql
我有2 DataFrame秒如下:
我需要像这样的工会:
该unionAll功能不起作用,因为列的数量和名称不同.
我怎样才能做到这一点?
Alb*_*nto 40
在Scala中,您只需附加所有缺少的列nulls.
import org.apache.spark.sql.functions._
// let df1 and df2 the Dataframes to merge
val df1 = sc.parallelize(List(
(50, 2),
(34, 4)
)).toDF("age", "children")
val df2 = sc.parallelize(List(
(26, true, 60000.00),
(32, false, 35000.00)
)).toDF("age", "education", "income")
val cols1 = df1.columns.toSet
val cols2 = df2.columns.toSet
val total = cols1 ++ cols2 // union
def expr(myCols: Set[String], allCols: Set[String]) = {
allCols.toList.map(x => x match {
case x if myCols.contains(x) => col(x)
case _ => lit(null).as(x)
})
}
df1.select(expr(cols1, total):_*).unionAll(df2.select(expr(cols2, total):_*)).show()
+---+--------+---------+-------+
|age|children|education| income|
+---+--------+---------+-------+
| 50| 2| null| null|
| 34| 4| null| null|
| 26| null| true|60000.0|
| 32| null| false|35000.0|
+---+--------+---------+-------+
Run Code Online (Sandbox Code Playgroud)
两个时间DataFrames都具有相同的列顺序,因为我们total在两种情况下都是映射.
df1.select(expr(cols1, total):_*).show()
df2.select(expr(cols2, total):_*).show()
+---+--------+---------+------+
|age|children|education|income|
+---+--------+---------+------+
| 50| 2| null| null|
| 34| 4| null| null|
+---+--------+---------+------+
+---+--------+---------+-------+
|age|children|education| income|
+---+--------+---------+-------+
| 26| null| true|60000.0|
| 32| null| false|35000.0|
+---+--------+---------+-------+
Run Code Online (Sandbox Code Playgroud)
小智 20
这是使用 pyspark 的 Python 3.0 代码:
from pyspark.sql.functions import lit
def __order_df_and_add_missing_cols(df, columns_order_list, df_missing_fields):
""" return ordered dataFrame by the columns order list with null in missing columns """
if not df_missing_fields: # no missing fields for the df
return df.select(columns_order_list)
else:
columns = []
for colName in columns_order_list:
if colName not in df_missing_fields:
columns.append(colName)
else:
columns.append(lit(None).alias(colName))
return df.select(columns)
def __add_missing_columns(df, missing_column_names):
""" Add missing columns as null in the end of the columns list """
list_missing_columns = []
for col in missing_column_names:
list_missing_columns.append(lit(None).alias(col))
return df.select(df.schema.names + list_missing_columns)
def __order_and_union_d_fs(left_df, right_df, left_list_miss_cols, right_list_miss_cols):
""" return union of data frames with ordered columns by left_df. """
left_df_all_cols = __add_missing_columns(left_df, left_list_miss_cols)
right_df_all_cols = __order_df_and_add_missing_cols(right_df, left_df_all_cols.schema.names,
right_list_miss_cols)
return left_df_all_cols.union(right_df_all_cols)
def union_d_fs(left_df, right_df):
""" Union between two dataFrames, if there is a gap of column fields,
it will append all missing columns as nulls """
# Check for None input
if left_df is None:
raise ValueError('left_df parameter should not be None')
if right_df is None:
raise ValueError('right_df parameter should not be None')
# For data frames with equal columns and order- regular union
if left_df.schema.names == right_df.schema.names:
return left_df.union(right_df)
else: # Different columns
# Save dataFrame columns name list as set
left_df_col_list = set(left_df.schema.names)
right_df_col_list = set(right_df.schema.names)
# Diff columns between left_df and right_df
right_list_miss_cols = list(left_df_col_list - right_df_col_list)
left_list_miss_cols = list(right_df_col_list - left_df_col_list)
return __order_and_union_d_fs(left_df, right_df, left_list_miss_cols, right_list_miss_cols)
Run Code Online (Sandbox Code Playgroud)
小智 17
这是我的 Python 版本:
from pyspark.sql import SparkSession, HiveContext
from pyspark.sql.functions import lit
from pyspark.sql import Row
def customUnion(df1, df2):
cols1 = df1.columns
cols2 = df2.columns
total_cols = sorted(cols1 + list(set(cols2) - set(cols1)))
def expr(mycols, allcols):
def processCols(colname):
if colname in mycols:
return colname
else:
return lit(None).alias(colname)
cols = map(processCols, allcols)
return list(cols)
appended = df1.select(expr(cols1, total_cols)).union(df2.select(expr(cols2, total_cols)))
return appended
Run Code Online (Sandbox Code Playgroud)
以下是示例用法:
data = [
Row(zip_code=58542, dma='MIN'),
Row(zip_code=58701, dma='MIN'),
Row(zip_code=57632, dma='MIN'),
Row(zip_code=58734, dma='MIN')
]
firstDF = spark.createDataFrame(data)
data = [
Row(zip_code='534', name='MIN'),
Row(zip_code='353', name='MIN'),
Row(zip_code='134', name='MIN'),
Row(zip_code='245', name='MIN')
]
secondDF = spark.createDataFrame(data)
customUnion(firstDF,secondDF).show()
Run Code Online (Sandbox Code Playgroud)
Zyg*_*ygD 16
火花 3.1+
df = df1.unionByName(df2, allowMissingColumns=True)
Run Code Online (Sandbox Code Playgroud)
检测结果:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
data1=[
(1 , '2016-08-29', 1 , 2, 3),
(2 , '2016-08-29', 1 , 2, 3),
(3 , '2016-08-29', 1 , 2, 3)]
df1 = spark.createDataFrame(data1, ['code' , 'date' , 'A' , 'B', 'C'])
data2=[
(5 , '2016-08-29', 1, 2, 3, 4),
(6 , '2016-08-29', 1, 2, 3, 4),
(7 , '2016-08-29', 1, 2, 3, 4)]
df2 = spark.createDataFrame(data2, ['code' , 'date' , 'B', 'C', 'D', 'E'])
df = df1.unionByName(df2, allowMissingColumns=True)
df.show()
# +----+----------+----+---+---+----+----+
# |code| date| A| B| C| D| E|
# +----+----------+----+---+---+----+----+
# | 1|2016-08-29| 1| 2| 3|null|null|
# | 2|2016-08-29| 1| 2| 3|null|null|
# | 3|2016-08-29| 1| 2| 3|null|null|
# | 5|2016-08-29|null| 1| 2| 3| 4|
# | 6|2016-08-29|null| 1| 2| 3| 4|
# | 7|2016-08-29|null| 1| 2| 3| 4|
# +----+----------+----+---+---+----+----+
Run Code Online (Sandbox Code Playgroud)
Rag*_*ags 10
一种非常简单的方法 - select从数据框和使用的相同顺序的列unionAll
df1.select('code', 'date', 'A', 'B', 'C', lit(None).alias('D'), lit(None).alias('E'))\
.unionAll(df2.select('code', 'date', lit(None).alias('A'), 'B', 'C', 'D', 'E'))
Run Code Online (Sandbox Code Playgroud)
Mar*_*kus 10
如果您只是使用简单的lit(None)解决方法(这也是我所知道的唯一方法),我会以某种方式发现这里的大多数 python 答案在他们的写作中有点过于笨拙。作为替代,这可能有用:
# df1 and df2 are assumed to be the given dataFrames from the question
# Get the lacking columns for each dataframe and set them to null in the respective dataFrame.
# First do so for df1...
for column in [column for column in df1.columns if column not in df2.columns]:
df1 = df1.withColumn(column, lit(None))
# ... and then for df2
for column in [column for column in df2.columns if column not in df1.columns]:
df2 = df2.withColumn(column, lit(None))
Run Code Online (Sandbox Code Playgroud)
之后就做union()你想做的事。
注意:如果您的列顺序不同df1,请df2使用unionByName()!
result = df1.unionByName(df2)
Run Code Online (Sandbox Code Playgroud)
这是一个pyspark解决方案.
它假定如果df1缺少某个字段df2,则将该缺少的字段添加到df2空值.但是,它还假设如果字段存在于两个数据帧中,但字段的类型或可为空性不同,则两个数据帧冲突且无法组合.在那种情况下,我提出了一个TypeError.
from pyspark.sql.functions import lit
def harmonize_schemas_and_combine(df_left, df_right):
left_types = {f.name: f.dataType for f in df_left.schema}
right_types = {f.name: f.dataType for f in df_right.schema}
left_fields = set((f.name, f.dataType, f.nullable) for f in df_left.schema)
right_fields = set((f.name, f.dataType, f.nullable) for f in df_right.schema)
# First go over left-unique fields
for l_name, l_type, l_nullable in left_fields.difference(right_fields):
if l_name in right_types:
r_type = right_types[l_name]
if l_type != r_type:
raise TypeError, "Union failed. Type conflict on field %s. left type %s, right type %s" % (l_name, l_type, r_type)
else:
raise TypeError, "Union failed. Nullability conflict on field %s. left nullable %s, right nullable %s" % (l_name, l_nullable, not(l_nullable))
df_right = df_right.withColumn(l_name, lit(None).cast(l_type))
# Now go over right-unique fields
for r_name, r_type, r_nullable in right_fields.difference(left_fields):
if r_name in left_types:
l_type = left_types[r_name]
if r_type != l_type:
raise TypeError, "Union failed. Type conflict on field %s. right type %s, left type %s" % (r_name, r_type, l_type)
else:
raise TypeError, "Union failed. Nullability conflict on field %s. right nullable %s, left nullable %s" % (r_name, r_nullable, not(r_nullable))
df_left = df_left.withColumn(r_name, lit(None).cast(r_type))
# Make sure columns are in the same order
df_left = df_left.select(df_right.columns)
return df_left.union(df_right)
Run Code Online (Sandbox Code Playgroud)
修改 Alberto Bonsanto 的版本以保留原始列顺序(OP 暗示顺序应与原始表匹配)。此外,该match部件引起了 Intellij 警告。
这是我的版本:
def unionDifferentTables(df1: DataFrame, df2: DataFrame): DataFrame = {
val cols1 = df1.columns.toSet
val cols2 = df2.columns.toSet
val total = cols1 ++ cols2 // union
val order = df1.columns ++ df2.columns
val sorted = total.toList.sortWith((a,b)=> order.indexOf(a) < order.indexOf(b))
def expr(myCols: Set[String], allCols: List[String]) = {
allCols.map( {
case x if myCols.contains(x) => col(x)
case y => lit(null).as(y)
})
}
df1.select(expr(cols1, sorted): _*).unionAll(df2.select(expr(cols2, sorted): _*))
}
Run Code Online (Sandbox Code Playgroud)
在pyspark中:
df = df1.join(df2, ['each', 'shared', 'col'], how='full')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
54495 次 |
| 最近记录: |