Haskell:如何创建一个不允许,一个或两个Applicatives的函数?

use*_*536 6 haskell applicative

Control.Applicative.optional允许处理零个或一个Applicatives.许多和一些分别允许0或更多,或1或更多.我想创建一个处理零,一或两个的函数,具体来说.签名可以是许多/一些,即

zeroOneOrTwo :: Alternative f => f a -> f [a]
Run Code Online (Sandbox Code Playgroud)

我觉得这应该是非常简单的,但我已经玩了一段时间并且无法使它工作.任何指针都将非常感激.

red*_*neb 8

这个怎么样:

zeroOneOrTwo :: Alternative f => f a -> f [a]
zeroOneOrTwo a = go (2 :: Int)
  where
    go n
      | n > 0 = ((:) <$> a <*> go (n - 1)) <|> pure []
      | otherwise = pure []
Run Code Online (Sandbox Code Playgroud)

  • 我保持这种方式 - 检查`n> 0`防止无效输入无限下降 - 并且_not_ wrap`go 2`但直接将其导出为`atMost :: Int - > fa - > f [a]`. (4认同)

dfe*_*uer 5

如果您遇到限制结果的麻烦,您也可以将其类型反映出来.

data ZOT a = Zero | One a | Two a a

form :: a -> Maybe a -> ZOT a
form a Nothing = One a
form a (Just b) = Two a b

zeroOneOrTwo :: Alternative f => f a -> f (ZOT a)
zeroOneOrTwo a = (form <$> a <*> optional a) <|> pure Zero
Run Code Online (Sandbox Code Playgroud)

如果你想要三个怎么办?或者最多四个?您可以使用几种语言扩展程序一次性涵盖所有此类案例.

{-# LANGUAGE DataKinds, GADTs #-}

data Nat = Z | S Nat

data Natty n where
  Zy :: Natty 'Z
  Sy :: Natty n -> Natty ('S n)

data AtMost n a where
  Nil :: AtMost n a
  Cons :: a -> AtMost n a -> AtMost ('S n) a

atMost :: Alternative f => Natty n -> f a -> f (AtMost n a)
atMost Zy _ = pure Nil
atMost (Sy n) a = (Cons <$> a <*> atMost n a) <|> pure Nil
Run Code Online (Sandbox Code Playgroud)

如果您不想使用任何花哨的扩展怎么办?好吧,它看起来不那么漂亮,但如果你愿意,你仍然可以这样做,从Ralf Hinze的"数字表示为高阶嵌套数据类型"中获取页面.

data Z a = Z deriving (Show)
data S f a = Nil | Cons a (f a) deriving (Show)

class AtMost g where
  atMost :: Alternative f => f a -> f (g a)

instance AtMost Z where
  atMost _ = pure Z
instance AtMost g => (AtMost (S g)) where
  atMost m = (Cons <$> m <*> atMost m) <|> pure Nil
Run Code Online (Sandbox Code Playgroud)

请注意,现在有两种不同的方法来构造空结果,Z并且Nil具有不同的类型.Z当结果与请求一样大时Nil使用,而在短时间使用时使用.

*AtMost> atMost (Just 3) :: Maybe ((S (S (S Z))) Int)
Just (Cons 3 (Cons 3 (Cons 3 Z)))

*AtMost> atMost Nothing :: Maybe ((S (S (S Z))) Int)
Just Nil

*AtMost> atMost undefined :: Maybe (Z Int)
Just Z
Run Code Online (Sandbox Code Playgroud)