Ror*_*haw 2 r list nested-lists anova sapply
我正在单个数据框中跨多个组运行简单的单向方差分析。
\n\n此处提供数据框:https ://www.dropbox.com/s/6nsjk4l1pgiwal3/cut1.csv?dl=0
\n\n>download.file(\'https://www.dropbox.com/s/6nsjk4l1pgiwal3/cut1.csv?raw=1\', destfile = "cut1.csv", method = "auto")\n\n> data <- read.csv("cut1.csv")\n> cut1 <- data %>% mutate(Plot = as.factor(Plot), Block = as.factor(Block), Cut = as.factor(Cut)) \n\n> str(cut1)\n\'data.frame\': 160 obs. of 6 variables:\n $ Plot : Factor w/ 16 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...\n $ Block : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 2 2 2 2 3 3 ...\n $ Treatment : Factor w/ 4 levels "AN","C","IU",..: 4 2 3 1 1 3 4 2 3 1 ...\n $ Cut : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...\n $ Measurement: Factor w/ 10 levels "ADF","Ash","Crude_Protein",..: 5 5 5 5 5 5 5 5 5 5 ...\n $ Value : num 956 965 961 963 955 ...\nRun Code Online (Sandbox Code Playgroud)\n\n我使用了这个SO问题中的一些代码来使aov函数能够应用于每个级别的Measurement因素:
anova_1<- sapply(unique(as.character(cut1$Measurement)),\n function(meas)aov(Value~Treatment+Block,cut1,subset=(Measurement==meas)),\n simplify=FALSE,USE.NAMES=TRUE)\nsummary_1 <- lapply(anova_1, summary)\nRun Code Online (Sandbox Code Playgroud)\n\n我可以手动查看,summary_1但理想情况下我想做的是将因子每个级别的 p 值提取Measurement到数据框中,然后我可以对其进行过滤,以便只看到哪些 <0.5。然后我会TukeyHSD在这些上运行。
summary_1看起来像这样(仅显示前 2 个列表):
> str(summary_1)\nList of 10\n $ Dry_matter :List of 1\n ..$ :Classes \xe2\x80\x98anova\xe2\x80\x99 and \'data.frame\': 3 obs. of 5 variables:\n .. ..$ Df : num [1:3] 3 3 9\n .. ..$ Sum Sq : num [1:3] 359 167 612\n .. ..$ Mean Sq: num [1:3] 119.8 55.5 68\n .. ..$ F value: num [1:3] 1.761 0.816 NA\n .. ..$ Pr(>F) : num [1:3] 0.224 0.517 NA\n ..- attr(*, "class")= chr [1:2] "summary.aov" "listof"\n $ Crude_Protein:List of 1\n ..$ :Classes \xe2\x80\x98anova\xe2\x80\x99 and \'data.frame\': 3 obs. of 5 variables:\n .. ..$ Df : num [1:3] 3 3 9\n .. ..$ Sum Sq : num [1:3] 306 721 1606\n .. ..$ Mean Sq: num [1:3] 102 240 178\n .. ..$ F value: num [1:3] 0.572 1.347 NA\n .. ..$ Pr(>F) : num [1:3] 0.647 0.319 NA\n ..- attr(*, "class")= chr [1:2] "summary.aov" "listof"\nRun Code Online (Sandbox Code Playgroud)\n\n我可以从列表之一中提取 p 值,summary_1如下所示:
> summary_1$OAH[[1]][,5][1]\n[1] 0.4734992\nRun Code Online (Sandbox Code Playgroud)\n\n但是,我不知道如何从所有嵌套列表中提取并放入数据框中。
\n\n非常感谢任何帮助。
\n您可以将该包与apply bybroom结合使用,并将输出以整洁的格式分配给 a 。dplyrAnovaMeasurementdata.frame
library(broom)
library(dplyr)
summaries <- cut1 %>% group_by(Measurement) %>%
do(tidy(aov(Value ~ Treatment + Block, data = .)))
head(summaries)
# Measurement term df sumsq meansq statistic p.value
# (fctr) (chr) (dbl) (dbl) (dbl) (dbl) (dbl)
#1 ADF Treatment 3 41.416875 13.805625 3.097871 0.07138437
#2 ADF Block 1 8.001125 8.001125 1.795388 0.20729351
#3 ADF Residuals 11 49.021375 4.456489 NA NA
#4 Ash Treatment 3 38.511875 12.837292 1.051787 0.40840601
#5 Ash Block 1 34.980125 34.980125 2.865998 0.11856463
#6 Ash Residuals 11 134.257375 12.205216 NA NA
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3112 次 |
| 最近记录: |