另一种在R中进行数据透视表的方法

cha*_*sno 5 r dplyr tidyr

我有如下数据集:

> head(worldcup)
               Team   Position Time Shots Passes Tackles Saves
Abdoun      Algeria Midfielder   16     0      6       0     0
Abe           Japan Midfielder  351     0    101      14     0
Abidal       France   Defender  180     0     91       6     0
Abou Diaby   France Midfielder  270     1    111       5     0
Aboubakar  Cameroon    Forward   46     2     16       0     0
Abreu       Uruguay    Forward   72     0     15       0     0
Run Code Online (Sandbox Code Playgroud)

然后是某些变量的代码计数平均值:

wc_3 <- worldcup %>% 
  select(Time, Passes, Tackles, Saves) %>%
  summarize(Time = mean(Time),
            Passes = mean(Passes),
            Tackles = mean(Tackles),
            Saves = mean(Saves))
Run Code Online (Sandbox Code Playgroud)

输出是:

> wc_3
      Time   Passes  Tackles     Saves
1 208.8639 84.52101 4.191597 0.6672269
Run Code Online (Sandbox Code Playgroud)

然后我需要执行如下输出:

      var           mean
     Time    208.8638655
   Passes     84.5210084
  Tackles      4.1915966
    Saves      0.6672269
Run Code Online (Sandbox Code Playgroud)

我试着这样做:

wc_3 <- worldcup %>% 
  select(Time, Passes, Tackles, Saves) %>%
  summarize(Time = mean(Time),
            Passes = mean(Passes),
            Tackles = mean(Tackles),
            Saves = mean(Saves)) %>%
  gather(var, mean, Time:Saves, factor_key=TRUE)
Run Code Online (Sandbox Code Playgroud)

输出相同.我的问题是:无论如何以不同的方式执行相同的输出?

这是我的课程,但我的提交被拒绝了.我不知道为什么,但我问过这件事.

请指教

akr*_*run 8

一个选项是gather首先,按'Var'分组并summarise获得mean'Val'

library(dplyr)
library(tidyr)
worldcup %>% 
       gather(Var, Val, Time:Saves) %>% 
       filter(Var!= "Shots") %>%
       group_by(Var) %>% 
       summarise(Mean = mean(Val))
Run Code Online (Sandbox Code Playgroud)