bri*_*enb 6 r fuzzy-comparison fuzzyjoin
我正在使用两个要基于阈值合并的不同数据集。假设两个数据帧如下所示:
library(dplyr)
library(fuzzyjoin)
library(lubridate)
df1 = data_frame(Item=1:5,
DateTime=c("2015-01-01 11:12:14", "2015-01-02 09:15:23",
"2015-01-02 15:46:11", "2015-04-19 22:11:33",
"2015-06-10 07:00:00"),
Count=c(1, 6, 11, 15, 9),
Name="Sterling",
Friend=c("Pam", "Cyril", "Cheryl", "Mallory", "Lana"))
df1$DateTime = ymd_hms(df1$DateTime)
df2 = data_frame(Item=21:25,
DateTime=c("2015-01-01 11:12:15", "2015-01-02 19:15:23",
"2015-01-02 15:46:11", "2015-05-19 22:11:33",
"2015-06-10 07:00:02"),
Count=c(3, 7, 11, 15, 8),
Name="Sterling",
Friend=c("Pam", "Kreger", "Woodhouse", "Gillete", "Lana"))
df2$DateTime = ymd_hms(df2$DateTime)
Run Code Online (Sandbox Code Playgroud)
我现在想,是能够左连接df2与df1基于的模糊匹配DateTime,并Count为各自的价值在两秒钟内,而除了所有其他值Item都相同。我以为我可以做到以下几点:
df1 %>%
difference_left_join(df2, by=c("DateTime", "Count"), max_dist=2)
Run Code Online (Sandbox Code Playgroud)
但这给了我以下输出:
# A tibble: 8 × 10
Item.x DateTime.x Count.x Name.x Friend.x Item.y DateTime.y Count.y Name.y Friend.y
<int> <dttm> <dbl> <chr> <chr> <int> <dttm> <dbl> <chr> <chr>
1 1 2015-01-01 11:12:14 1 Sterling Pam 21 2015-01-01 11:12:15 3 Sterling Pam
2 1 2015-01-01 11:12:14 1 Sterling Pam 21 2015-01-01 11:12:15 3 Sterling Pam
3 2 2015-01-02 09:15:23 6 Sterling Cyril NA <NA> NA <NA> <NA>
4 3 2015-01-02 15:46:11 11 Sterling Cheryl 23 2015-01-02 15:46:11 11 Sterling Woodhouse
5 3 2015-01-02 15:46:11 11 Sterling Cheryl 23 2015-01-02 15:46:11 11 Sterling Woodhouse
6 4 2015-04-19 22:11:33 15 Sterling Mallory NA <NA> NA <NA> <NA>
7 5 2015-06-10 07:00:00 9 Sterling Lana 25 2015-06-10 07:00:02 8 Sterling Lana
8 5 2015-06-10 07:00:00 9 Sterling Lana 25 2015-06-10 07:00:02 8 Sterling Lana
Run Code Online (Sandbox Code Playgroud)
这很接近,只是鉴于名称不同,第3行不应该合并(并且我希望第2行在给定阈值的情况下合并,即使我不希望合并)。
如何得到以下数据框?需要注意的是在第二排和第三排从df2没有被合并,尽管DateTime和Count满足阈值限制。这是因为其他列(除外Item)不相同。
desired_output
# Item DateTime Count Name Friend
# 1 3 2015-01-02 15:46:11 11 Sterling Cheryl
# 2 2 2015-01-02 09:15:23 6 Sterling Cyril
# 3 5 2015-06-10 07:00:00 9 Sterling Lana
# 4 25 2015-06-10 07:00:02 8 Sterling Lana
# 5 4 2015-04-19 22:11:33 15 Sterling Mallory
# 6 1 2015-01-01 11:12:14 1 Sterling Pam
# 7 21 2015-01-01 11:12:15 3 Sterling Pam
Run Code Online (Sandbox Code Playgroud)
好的,因此,您收到的消息是因为无法在非数字列上计算模糊匹配。
要做的是将其转换为数字。由于您的卡尺以秒为单位,因此我将其转换为秒,然后将其设置为数字:
library(dplyr)
library(fuzzyjoin)
library(lubridate)
df1 = data_frame(Item=1:5,
DateTime=c("2015-01-01 11:12:14", "2015-01-02 09:15:23",
"2015-01-02 15:46:11", "2015-04-19 22:11:33",
"2015-06-10 07:00:00"),
Count=c(1, 6, 11, 15, 9),
Name="Sterling",
Friend=c("Pam", "Cyril", "Cheryl", "Mallory", "Lana"))
df1$DateTime1 = as.numeric(seconds(ymd_hms(df1$DateTime)))
df2 = data_frame(Item=21:25,
DateTime=c("2015-01-01 11:12:15", "2015-01-02 19:25:56",
"2015-01-02 15:46:11", "2015-05-19 22:11:33",
"2015-06-10 07:00:02"),
Count=c(3, 6, 11, 15, 8),
Name="Sterling",
Friend=c("Pam", "Kreger", "Woodhouse", "Gillete", "Lana"))
df2$DateTime1 = as.numeric(seconds(ymd_hms(df2$DateTime)))
df1 %>%
difference_left_join(y=df2, by=c("DateTime1", "Count"), max_dist=2)
Run Code Online (Sandbox Code Playgroud)
根据我们在评论中的讨论,一个简单的调整就可以将其子集化为其他字符列匹配的情况:
df1[df2$Friend == df1$Friend,] %>%
difference_left_join(y=df2[df2$Friend == df1$Friend,], by=c("DateTime1", "Count"), max_dist=2)
Run Code Online (Sandbox Code Playgroud)
该示例仅用于,Friend但您当然可以使用&它来处理多列。
| 归档时间: |
|
| 查看次数: |
1835 次 |
| 最近记录: |