r_g*_*g_r 4 python dictionary append multiple-columns pandas
我有一个Pandas Dataframe,其中包含一列包含key:value对字典的单元格,如下所示:
{"name":"Test Thorton","company":"Test Group","address":"10850 Test #325\r\n","city":"Test City","state_province":"CA","postal_code":"95670","country":"USA","email_address":"test@testtest.com","phone_number":"999-888-3333","equipment_description":"I'm a big red truck\r\n\r\nRSN# 0000","response_desired":"week","response_method":"email"}
Run Code Online (Sandbox Code Playgroud)
我正在尝试解析字典,因此生成的Dataframe包含每个键的新列,并使用每列的结果值填充该行,如下所示:
//Before
1 2 3 4 5
a b c d {6:y, 7:v}
//After
1 2 3 4 5 6 7
a b c d {6:y, 7:v} y v
Run Code Online (Sandbox Code Playgroud)
建议非常感谢.
考虑 df
df = pd.DataFrame([
['a', 'b', 'c', 'd', dict(F='y', G='v')],
['a', 'b', 'c', 'd', dict(F='y', G='v')],
], columns=list('ABCDE'))
df
A B C D E
0 a b c d {'F': 'y', 'G': 'v'}
1 a b c d {'F': 'y', 'G': 'v'}
Run Code Online (Sandbox Code Playgroud)
选项1
使用pd.Series.apply,分配新列
df.E.apply(pd.Series)
F G
0 y v
1 y v
Run Code Online (Sandbox Code Playgroud)
像这样分配它
df[['F', 'G']] = df.E.apply(pd.Series)
df.drop('E', axis=1)
A B C D F G
0 a b c d y v
1 a b c d y v
Run Code Online (Sandbox Code Playgroud)
选项2
使用该pd.DataFrame.assign方法管理整个事物
df.drop('E', 1).assign(**pd.DataFrame(df.E.values.tolist()))
A B C D F G
0 a b c d y v
1 a b c d y v
Run Code Online (Sandbox Code Playgroud)
我认为你可以使用concat:
df = pd.DataFrame({1:['a','h'],2:['b','h'], 5:[{6:'y', 7:'v'},{6:'u', 7:'t'}] })
print (df)
1 2 5
0 a b {6: 'y', 7: 'v'}
1 h h {6: 'u', 7: 't'}
print (df.loc[:,5].values.tolist())
[{6: 'y', 7: 'v'}, {6: 'u', 7: 't'}]
df1 = pd.DataFrame(df.loc[:,5].values.tolist())
print (df1)
6 7
0 y v
1 u t
print (pd.concat([df, df1], axis=1))
1 2 5 6 7
0 a b {6: 'y', 7: 'v'} y v
1 h h {6: 'u', 7: 't'} u t
Run Code Online (Sandbox Code Playgroud)
时间( len(df)=2k):
In [2]: %timeit (pd.concat([df, pd.DataFrame(df.loc[:,5].values.tolist())], axis=1))
100 loops, best of 3: 2.99 ms per loop
In [3]: %timeit (pir(df))
1 loop, best of 3: 625 ms per loop
df = pd.concat([df]*1000).reset_index(drop=True)
print (pd.concat([df, pd.DataFrame(df.loc[:,5].values.tolist())], axis=1))
def pir(df):
df[['F', 'G']] = df[5].apply(pd.Series)
df.drop(5, axis=1)
return df
print (pir(df))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6374 次 |
| 最近记录: |