Eda*_*ame 34 python statistics python-2.7 pandas
我有一个pandas数据框my_df,在那里我可以找到给定列的mean(),median(),mode():
my_df['field_A'].mean()
my_df['field_A'].median()
my_df['field_A'].mode()
Run Code Online (Sandbox Code Playgroud)
我想知道是否有可能找到更详细的统计数据,如90%?谢谢!
sta*_*010 42
您可以使用pandas.DataFrame.quantile()函数,如下所示.
import pandas as pd
import random
A = [ random.randint(0,100) for i in range(10) ]
B = [ random.randint(0,100) for i in range(10) ]
df = pd.DataFrame({ 'field_A': A, 'field_B': B })
df
# field_A field_B
# 0 90 72
# 1 63 84
# 2 11 74
# 3 61 66
# 4 78 80
# 5 67 75
# 6 89 47
# 7 12 22
# 8 43 5
# 9 30 64
df.field_A.mean() # Same as df['field_A'].mean()
# 54.399999999999999
df.field_A.median()
# 62.0
# You can call `quantile(i)` to get the i'th quantile,
# where `i` should be a fractional number.
df.field_A.quantile(0.1) # 10th percentile
# 11.9
df.field_A.quantile(0.5) # same as median
# 62.0
df.field_A.quantile(0.9) # 90th percentile
# 89.10000000000001
Run Code Online (Sandbox Code Playgroud)
ris*_*ain 15
您甚至可以为多个列提供空值并获取多个分位数值(我使用 95 百分位进行异常值处理)
my_df[['field_A','field_B']].dropna().quantile([0.0, .5, .90, .95])
Run Code Online (Sandbox Code Playgroud)
piR*_*red 11
假设系列 s
s = pd.Series(np.arange(100))
Run Code Online (Sandbox Code Playgroud)
获取分位数 [.1, .2, .3, .4, .5, .6, .7, .8, .9]
s.quantile(np.linspace(.1, 1, 9, 0))
0.1 9.9
0.2 19.8
0.3 29.7
0.4 39.6
0.5 49.5
0.6 59.4
0.7 69.3
0.8 79.2
0.9 89.1
dtype: float64
Run Code Online (Sandbox Code Playgroud)
要么
s.quantile(np.linspace(.1, 1, 9, 0), 'lower')
0.1 9
0.2 19
0.3 29
0.4 39
0.5 49
0.6 59
0.7 69
0.8 79
0.9 89
dtype: int32
Run Code Online (Sandbox Code Playgroud)
小智 8
一种非常简单有效的方法是在特定列上调用描述函数
df['field_A'].describe()
Run Code Online (Sandbox Code Playgroud)
这将为您提供平均值、最大值、中位数和第 75 个百分位数
描述会给你四分位数,如果你想要百分位数,你可以这样做
df['YOUR_COLUMN_HERE'].describe(percentiles=[.1, .2, .3, .4, .5, .6 , .7, .8, .9, 1])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
71160 次 |
最近记录: |