Cod*_*ead 5 python neural-network autoencoder deep-learning keras
我训练了以下自动编码器模型:
input_img = Input(shape=(1, 32, 32))
x = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(input_img)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
encoded = MaxPooling2D((2, 2), border_mode='same')(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, 3, 3, activation='relu',border_mode='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(1, 3, 3, activation='sigmoid', border_mode='same')(x)
autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='RMSprop', loss='binary_crossentropy')
autoencoder.fit(X_train, X_train,
nb_epoch=1,
batch_size=128,
shuffle=True,
validation_data=(X_test, X_test)]
)
Run Code Online (Sandbox Code Playgroud)
训练这个自动编码器后,我想将经过训练的编码器用于监督线。我如何仅提取该自动编码器模型的经过训练的编码器部分?
您可以在训练后创建一个仅使用编码器的模型:
autoencoder = Model(input_img, encoded)
Run Code Online (Sandbox Code Playgroud)
如果您想在编码部分之后添加更多层,您也可以这样做:
classifier = Dense(nb_classes, activation='softmax')(encoded)
model = Model(input_img, classifier)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2653 次 |
| 最近记录: |