从CSV文件创建Spark数据集

Pow*_*ers 9 apache-spark apache-spark-dataset

我想从一个简单的CSV文件创建一个Spark数据集.以下是CSV文件的内容:

name,state,number_of_people,coolness_index
trenton,nj,"10","4.5"
bedford,ny,"20","3.3"
patterson,nj,"30","2.2"
camden,nj,"40","8.8"
Run Code Online (Sandbox Code Playgroud)

以下是制作数据集的代码:

var location = "s3a://path_to_csv"

case class City(name: String, state: String, number_of_people: Long)

val cities = spark.read
  .option("header", "true")
  .option("charset", "UTF8")
  .option("delimiter",",")
  .csv(location)
  .as[City]
Run Code Online (Sandbox Code Playgroud)

以下是错误消息:"无法number_of_people向字符串转换为bigint,因为它可能会截断"

Databricks讨论了如何在此博客文章中创建数据集和此特定错误消息.

编码器急切地检查您的数据是否与预期的架构匹配,在您尝试错误处理TB数据之前提供有用的错误消息.例如,如果我们尝试使用太小的数据类型,那么转换为对象将导致截断(即numStudents大于一个字节,其最大值为255),Analyzer将发出AnalysisException.

我正在使用该Long类型,所以我没想到会看到此错误消息.

小智 19

使用模式推断:

val cities = spark.read
  .option("inferSchema", "true")
  ...
Run Code Online (Sandbox Code Playgroud)

或提供架构:

val cities = spark.read
  .schema(StructType(Array(StructField("name", StringType), ...)
Run Code Online (Sandbox Code Playgroud)

或演员:

val cities = spark.read
  .option("header", "true")
  .csv(location)
  .withColumn("number_of_people", col("number_of_people").cast(LongType))
  .as[City]
Run Code Online (Sandbox Code Playgroud)