LeW*_*ite 4 fortran scientific-computing quadruple-precision
我正在进行一些长期模拟,其中我试图在ODE系统的解决方案中实现尽可能高的准确性.我试图找出四倍(128位)精度计算需要多少时间与双倍(64位)精度.我google了一下,看到了几个意见:有人说它需要4倍,其他60-70倍......所以我决定自己动手,我写了一个简单的Fortran基准程序:
program QUAD_TEST
implicit none
integer,parameter :: dp = selected_int_kind(15)
integer,parameter :: qp = selected_int_kind(33)
integer :: cstart_dp,cend_dp,cstart_qp,cend_qp,crate
real :: time_dp,time_qp
real(dp) :: sum_dp,sqrt_dp,pi_dp,mone_dp,zero_dp
real(qp) :: sum_qp,sqrt_qp,pi_qp,mone_qp,zero_qp
integer :: i
! ==============================================================================
! == TEST 1. ELEMENTARY OPERATIONS ==
sum_dp = 1._dp
sum_qp = 1._qp
call SYSTEM_CLOCK(count_rate=crate)
write(*,*) 'Testing elementary operations...'
call SYSTEM_CLOCK(count=cstart_dp)
do i=1,50000000
sum_dp = sum_dp - 1._dp
sum_dp = sum_dp + 1._dp
sum_dp = sum_dp*2._dp
sum_dp = sum_dp/2._dp
end do
call SYSTEM_CLOCK(count=cend_dp)
time_dp = real(cend_dp - cstart_dp)/real(crate)
write(*,*) 'DP sum: ',sum_dp
write(*,*) 'DP time: ',time_dp,' seconds'
call SYSTEM_CLOCK(count=cstart_qp)
do i=1,50000000
sum_qp = sum_qp - 1._qp
sum_qp = sum_qp + 1._qp
sum_qp = sum_qp*2._qp
sum_qp = sum_qp/2._qp
end do
call SYSTEM_CLOCK(count=cend_qp)
time_qp = real(cend_qp - cstart_qp)/real(crate)
write(*,*) 'QP sum: ',sum_qp
write(*,*) 'QP time: ',time_qp,' seconds'
write(*,*)
write(*,*) 'DP is ',time_qp/time_dp,' times faster.'
write(*,*)
! == TEST 2. SQUARE ROOT ==
sqrt_dp = 2._dp
sqrt_qp = 2._qp
write(*,*) 'Testing square root ...'
call SYSTEM_CLOCK(count=cstart_dp)
do i = 1,10000000
sqrt_dp = sqrt(sqrt_dp)
sqrt_dp = 2._dp
end do
call SYSTEM_CLOCK(count=cend_dp)
time_dp = real(cend_dp - cstart_dp)/real(crate)
write(*,*) 'DP sqrt: ',sqrt_dp
write(*,*) 'DP time: ',time_dp,' seconds'
call SYSTEM_CLOCK(count=cstart_qp)
do i = 1,10000000
sqrt_qp = sqrt(sqrt_qp)
sqrt_qp = 2._qp
end do
call SYSTEM_CLOCK(count=cend_qp)
time_qp = real(cend_qp - cstart_qp)/real(crate)
write(*,*) 'QP sqrt: ',sqrt_qp
write(*,*) 'QP time: ',time_qp,' seconds'
write(*,*)
write(*,*) 'DP is ',time_qp/time_dp,' times faster.'
write(*,*)
! == TEST 3. TRIGONOMETRIC FUNCTIONS ==
pi_dp = acos(-1._dp); mone_dp = 1._dp; zero_dp = 0._dp
pi_qp = acos(-1._qp); mone_qp = 1._qp; zero_qp = 0._qp
write(*,*) 'Testing trigonometric functions ...'
call SYSTEM_CLOCK(count=cstart_dp)
do i = 1,10000000
mone_dp = cos(pi_dp)
zero_dp = sin(pi_dp)
end do
call SYSTEM_CLOCK(count=cend_dp)
time_dp = real(cend_dp - cstart_dp)/real(crate)
write(*,*) 'DP cos: ',mone_dp
write(*,*) 'DP sin: ',zero_dp
write(*,*) 'DP time: ',time_dp,' seconds'
call SYSTEM_CLOCK(count=cstart_qp)
do i = 1,10000000
mone_qp = cos(pi_qp)
zero_qp = sin(pi_qp)
end do
call SYSTEM_CLOCK(count=cend_qp)
time_qp = real(cend_qp - cstart_qp)/real(crate)
write(*,*) 'QP cos: ',mone_qp
write(*,*) 'QP sin: ',zero_qp
write(*,*) 'QP time: ',time_qp,' seconds'
write(*,*)
write(*,*) 'DP is ',time_qp/time_dp,' times faster.'
write(*,*)
end program QUAD_TEST
Run Code Online (Sandbox Code Playgroud)
编译后的典型运行结果gfortran 4.8.4,没有任何优化标志:
Testing elementary operations...
DP sum: 1.0000000000000000
DP time: 0.572000027 seconds
QP sum: 1.00000000000000000000000000000000000
QP time: 4.32299995 seconds
DP is 7.55769205 times faster.
Testing square root ...
DP sqrt: 2.0000000000000000
DP time: 5.20000011E-02 seconds
QP sqrt: 2.00000000000000000000000000000000000
QP time: 2.60700011 seconds
DP is 50.1346169 times faster.
Testing trigonometric functions ...
DP cos: -1.0000000000000000
DP sin: 1.2246467991473532E-016
DP time: 2.79600000 seconds
QP cos: -1.00000000000000000000000000000000000
QP sin: 8.67181013012378102479704402604335225E-0035
QP time: 5.90199995 seconds
DP is 2.11087275 times faster.
Run Code Online (Sandbox Code Playgroud)
必须要在这里发生一些事情.我的猜测是通过优化算法sqrt计算gfortran出来的,这可能还没有用于四重精度计算.这可能不是这样的sin和cos,偏偏基本操作7.6倍,四精度慢而对于三角函数的事情只有2倍慢下来?如果用于三角函数的算法对于四次和双精度都是相同的,我预计它们的CPU时间也会增加七倍.
与64位相比,使用128位精度时科学计算的平均减速是多少?
我在Intel i7-4771 @ 3.50GHz上运行它.
更多的是评论而不是答案,但......
当前的CPU为双精度浮点运算提供了大量的硬件加速.有些甚至提供扩展精度的设施.除此之外,您仅限于软件实现(正如您所注意到的那样)相当慢.
然而,在一般情况下几乎无法预测这种减速的确切因素.这取决于您的CPU(例如内置的加速度)以及软件堆栈.对于双精度,您通常使用不同的数学库而不是四倍精度,并且这些算法可能使用不同的算法进行基本操作.
对于使用相同算法的给定硬件上的特定操作/算法,您可能可以派生出一个数字,但这肯定不会普遍存在.
| 归档时间: |
|
| 查看次数: |
380 次 |
| 最近记录: |