Mat*_*att 13 syntax haskell function combinators fold
在这种情况下,我仍然无法解决lambda的工作原理.
foldr (\y ys -> ys ++ [y]) [] [1,2,3]
Run Code Online (Sandbox Code Playgroud)
有人可以一步一步地试着向我解释一下吗?
而且如何foldl工作?
com*_*nad 31
foldr很简单:
foldr :: (a->b->b) -> b -> [a] -> b
Run Code Online (Sandbox Code Playgroud)
它需要一个与(:)某种程度相似的函数,
(:) :: a -> [a] -> [a]
Run Code Online (Sandbox Code Playgroud)
和一个类似于空列表[]的值,
[] :: [a]
Run Code Online (Sandbox Code Playgroud)
并在某些列表中替换每个:和[].
它看起来像这样:
foldr f e (1:2:3:[]) = 1 `f` (2 `f` (3 `f` e))
Run Code Online (Sandbox Code Playgroud)
您可以将foldr想象成一些状态机评估器:
f是过渡,
f :: input -> state -> state
Run Code Online (Sandbox Code Playgroud)
而e是开始状态.
e :: state
Run Code Online (Sandbox Code Playgroud)
foldr(foldRIGHT)从右端开始,在输入列表上运行具有转换f和开始状态e的状态机.想象一下因为来自-RIGHT的pacman而在中缀表示法中.
foldl(foldLEFT)从-LEFT执行相同的操作,但是用中缀表示法编写的转换函数从右边获取其输入参数.因此机器从左端开始使用列表.吃豆子消耗从-LEFT列表张开嘴向右,因为口(B-> A-> B),而不是(A-> B-> B).
foldl :: (b->a->b) -> b -> [a] -> b
Run Code Online (Sandbox Code Playgroud)
为了清楚起见,想象一下函数减去转换:
foldl (-) 100 [1] = 99 = ((100)-1)
foldl (-) 100 [1,2] = 97 = (( 99)-2) = (((100)-1)-2)
foldl (-) 100 [1,2,3] = 94 = (( 97)-3)
foldl (-) 100 [1,2,3,4] = 90 = (( 94)-4)
foldl (-) 100 [1,2,3,4,5] = 85 = (( 90)-5)
foldr (-) 100 [1] = -99 = (1-(100))
foldr (-) 100 [2,1] = 101 = (2-(-99)) = (2-(1-(100)))
foldr (-) 100 [3,2,1] = -98 = (3-(101))
foldr (-) 100 [4,3,2,1] = 102 = (4-(-98))
foldr (-) 100 [5,4,3,2,1] = -97 = (5-(102))
Run Code Online (Sandbox Code Playgroud)
您可能希望在列表可以无限的情况下使用foldr,并且评估应该是惰性的:
foldr (either (\l ~(ls,rs)->(l:ls,rs))
(\r ~(ls,rs)->(ls,r:rs))
) ([],[]) :: [Either l r]->([l],[r])
Run Code Online (Sandbox Code Playgroud)
当您使用整个列表生成其输出时,您可能希望使用foldl的严格版本,即foldl'.由于极长列表与惰性求值相结合,它可能表现更好并且可能会阻止您出现堆栈溢出或内存不足异常(取决于编译器):
foldl' (+) 0 [1..100000000] = 5000000050000000
foldl (+) 0 [1..100000000] = error "stack overflow or out of memory" -- dont try in ghci
foldr (+) 0 [1..100000000] = error "stack overflow or out of memory" -- dont try in ghci
Run Code Online (Sandbox Code Playgroud)
第一步 - 逐步 - 创建列表的一个条目,对其进行评估并使用它.
第二个创建一个非常长的公式,用((...((0 + 1)+2)+3)+ ...)浪费记忆,然后评估所有的公式.
第三个就像第二个,但与另一个公式.
yfe*_*lum 14
运用
foldr f z [] = z
foldr f z (x:xs) = x `f` foldr f z xs
Run Code Online (Sandbox Code Playgroud)
和
k y ys = ys ++ [y]
Run Code Online (Sandbox Code Playgroud)
我们打开包装:
foldr k [] [1,2,3]
= k 1 (foldr k [] [2,3]
= k 1 (k 2 (foldr k [] [3]))
= k 1 (k 2 (k 3 (foldr k [] [])))
= (k 2 (k 3 (foldr k [] []))) ++ [1]
= ((k 3 (foldr k [] [])) ++ [2]) ++ [1]
= (((foldr k [] []) ++ [3]) ++ [2]) ++ [1]
= ((([]) ++ [3]) ++ [2]) ++ [1]
= (([3]) ++ [2]) ++ [1]
= ([3,2]) ++ [1]
= [3,2,1]
Run Code Online (Sandbox Code Playgroud)
定义foldr是:
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
Run Code Online (Sandbox Code Playgroud)
所以这是一步一步减少你的例子:
foldr (\y ys -> ys ++ [y]) [] [1,2,3]
= (\y ys -> ys ++ [y]) 1 (foldr (\y ys -> ys ++ [y]) [] [2,3])
= (foldr (\y ys -> ys ++ [y]) [] [2,3]) ++ [1]
= (\y ys -> ys ++ [y]) 2 (foldr (\y ys -> ys ++ [y]) [] [3]) ++ [1]
= (foldr (\y ys -> ys ++ [y]) [] [3]) ++ [2] ++ [1]
= (\y ys -> ys ++ [y]) 3 (foldr (\y ys -> ys ++ [y]) [] []) ++ [2] ++ [1]
= (foldr (\y ys -> ys ++ [y]) [] []) ++ [3] ++ [2] ++ [1]
= [] ++ [3] ++ [2] ++ [1]
= [3,2,1]
Run Code Online (Sandbox Code Playgroud)