我正在尝试清理一个数据框,我想用另一列中的相应值替换一列中的 NA。我还想一次为多个列执行此操作。
示例数据框。
set.seed(123)
dates <- seq(as.Date("2016-01-01"), by = "day", length = 10)
names <- rep(c("John Doe", "Jane Smith"), each = 5)
var1_group <- runif(10)
var2_group <- runif(10)
var1_person <- runif(10)
var2_person <- runif(10)
myDF <- data.frame(names, var1_group, var2_group, var1_person, var2_person)
myDF <- cbind(dates, myDF)
Run Code Online (Sandbox Code Playgroud)
使用 dplyr 进行一些操作后...
myDF <- myDF %>% mutate_each(funs(lag), contains("group"))
myDF <- myDF %>% group_by(names) %>% mutate_each(funs(lag), contains("person"))
Run Code Online (Sandbox Code Playgroud)
我得到了一堆 NA...
dates names var1_group var2_group var1_person var2_person
1 2016-01-01 John Doe NA NA NA NA
2 2016-01-02 John Doe 0.2875775 0.95683335 0.8895393 0.9630242
3 2016-01-03 John Doe 0.7883051 0.45333416 0.6928034 0.9022990
4 2016-01-04 John Doe 0.4089769 0.67757064 0.6405068 0.6907053
5 2016-01-05 John Doe 0.8830174 0.57263340 0.9942698 0.7954674
6 2016-01-06 Jane Smith 0.9404673 0.10292468 NA NA
7 2016-01-07 Jane Smith 0.0455565 0.89982497 0.7085305 0.4777960
8 2016-01-08 Jane Smith 0.5281055 0.24608773 0.5440660 0.7584595
9 2016-01-09 Jane Smith 0.8924190 0.04205953 0.5941420 0.2164079
10 2016-01-10 Jane Smith 0.5514350 0.32792072 0.2891597 0.3181810
Run Code Online (Sandbox Code Playgroud)
我现在想做的是将 *_person 列中的 NA 替换为 *_group 列中的相应值。(见第 6 行)
dates names var1_group var2_group var1_person var2_person
1 2016-01-01 John Doe NA NA NA NA
2 2016-01-02 John Doe 0.2875775 0.95683335 0.8895393 0.9630242
3 2016-01-03 John Doe 0.7883051 0.45333416 0.6928034 0.9022990
4 2016-01-04 John Doe 0.4089769 0.67757064 0.6405068 0.6907053
5 2016-01-05 John Doe 0.8830174 0.57263340 0.9942698 0.7954674
6 2016-01-06 Jane Smith 0.9404673 0.10292468 0.9404673 0.1029246
7 2016-01-07 Jane Smith 0.0455565 0.89982497 0.7085305 0.4777960
8 2016-01-08 Jane Smith 0.5281055 0.24608773 0.5440660 0.7584595
9 2016-01-09 Jane Smith 0.8924190 0.04205953 0.5941420 0.2164079
10 2016-01-10 Jane Smith 0.5514350 0.32792072 0.2891597 0.3181810
Run Code Online (Sandbox Code Playgroud)
这适用于一列...
myDF$var1_person <- ifelse(is.na(myDF$var1_person), myDF$var1_group, myDF$var1_person)
Run Code Online (Sandbox Code Playgroud)
但我想一次对所有列执行此操作。在我的实际数据框中,每组大约有 20 列。我已经尝试了很多其他的东西,但我不想用我的废话把这篇文章弄得一团糟。
*如果您可以根据列前缀获得匹配 n 个变量的代码,则加分。
var1_group > var1_person
var2_group > var2_person
...
varn_group > varn_person
Run Code Online (Sandbox Code Playgroud)
这是一个选项,可以使用set它data.table进行替换
library(data.table)
#convert the data.frame to data.table
setDT(myDF)
#get the column name of 'group' and 'person' columns
nm1 <- grep("group", names(myDF), value = TRUE)
nm2 <- grep("person", names(myDF), value = TRUE)
#loop through the sequence of 'nm1'
for(j in seq_along(nm1)){
#set the elements in the row that are NA for each 'period' column
#with the corresponding row from 'group' column specified in the "value"
set(myDF, i = which(is.na(myDF[[nm2[j]]])), j = nm2[j],
value = myDF[[nm1[j]]][is.na(myDF[[nm2[j]]])])
}
myDF
# dates names var1_group var2_group var1_person var2_person
#1: 2016-01-01 John Doe NA NA NA NA
#2: 2016-01-02 John Doe 0.2875775 0.95683335 0.8895393 0.9630242
#3: 2016-01-03 John Doe 0.7883051 0.45333416 0.6928034 0.9022990
#4: 2016-01-04 John Doe 0.4089769 0.67757064 0.6405068 0.6907053
#5: 2016-01-05 John Doe 0.8830174 0.57263340 0.9942698 0.7954674
#6: 2016-01-06 Jane Smith 0.9404673 0.10292468 0.9404673 0.1029247
#7: 2016-01-07 Jane Smith 0.0455565 0.89982497 0.7085305 0.4777960
#8: 2016-01-08 Jane Smith 0.5281055 0.24608773 0.5440660 0.7584595
#9: 2016-01-09 Jane Smith 0.8924190 0.04205953 0.5941420 0.2164079
#10:2016-01-10 Jane Smith 0.5514350 0.32792072 0.2891597 0.3181810
Run Code Online (Sandbox Code Playgroud)