寻找最大子阵列的分而治之算法 - 如何提供结果子阵列索引?

Kha*_*laf 5 c++ algorithm recursion logic divide-and-conquer

对不起,我有一个使用强力算法O(n ^ 2),除法和征服O(nlogn)Kadane算法O(n)来解决最大子阵列问题的任务.(我的代码不同).

" 例如,对于值序列,{?2, 1, ?3, 4, ?1, 2, 1, ?5, 4}具有最大总和的连续子数组是[4, ?1, 2, 1]6. " - 来自Wiki页面.

我完成了Kadane和BruteForce,其中我所需的输出不仅仅是找到总和,还有找到的子数组的起始索引结束索引.

我当前的DivideAndConquer代码得到了正确的总和.但是,由于我以递归方式(当然)实现了索引,因此无法看到跟踪索引的方法.我不知道在这种情况下唯一的方法是使用全局变量(我不喜欢)..你能帮忙解决这个问题吗?或者我需要改变整个设计吗?

#include <iostream>

int DivideAndConquer(int[], int);

int main()
{
    // Example 1
    //const int MyArraySize = 16;
    //int MyArray[MyArraySize] = {13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7 }; // answer: Index 7 -> 10, sum = 43

    // Example 2
    const int MyArraySize = 8;
    int MyArray[MyArraySize] = { -2, -5, 6, -2, -3, 1, 5, -6 }; // answer: Index 2 -> 6, sum = 7

    int FinalResult;

    FinalResult = DivideAndConquer(MyArray, MyArraySize);
    std::cout << "Using Divide And Conquer: With O(nlogn) Sum = " << FinalResult << "\n\n";

    system("pause");
    return 0;
}

int DivideAndConquer(int* _myArray, int _myArraySize)
{
    if (_myArraySize == 1)
        return _myArray[0];

    int middle = _myArraySize / 2;
    int Result_LeftPortion = DivideAndConquer(_myArray, middle);
    int Result_RightPortion = DivideAndConquer(_myArray + middle, _myArraySize - middle);

    int LeftSum = -9999;
    int RightSum = -9999;
    int TotalSum = 0;

    for (int i = middle; i < _myArraySize; i++)
    {
        TotalSum += _myArray[i];
        RightSum = TotalSum < RightSum ? RightSum : TotalSum;
    }

    TotalSum = 0;

    for (int i = middle - 1; i >= 0; i--)
    {
        TotalSum += _myArray[i];
        LeftSum = TotalSum < LeftSum ? LeftSum : TotalSum;
    }

    int PartialResult = LeftSum < RightSum ? RightSum : LeftSum;
    int Result= (PartialResult < LeftSum + RightSum ? LeftSum + RightSum : PartialResult);

    return Result;
}
Run Code Online (Sandbox Code Playgroud)

Tem*_*pux 4

你的算法有逻辑问题并且不是最优的。您甚至没有使用Result_LeftPortion,Result_RightPortion值。您的最终结果始终是整个数组中RightSumLeftSum和的最大值。TotalSum所有其他子数组中的值都将被忽略。

用分而治之的方法解决这个问题的一种方法如下。您应该为每个子数组保存四个值:

  1. 包含左侧元素的最大和 ( s_l )
  2. 包含正确元素的最大和 ( s_r )
  3. 整个数组的总和 ( t )
  4. 上述值的最大值 ( mx )

对于您要检查大小为 1 的子数组的情况,所有这些值都等于该元素的值。合并两个子数组(sub_left、sub_right)时,这些值将是:

  1. s_l = max( sub_left.s_l, sub_left.t + sub_right.s_l )
  2. s_r = max( sub_right.s_r, sub_right.t + sub_left.s_r )
  3. t = sum( sub_left.t + sub_right.t )
  4. mx = max( s_l, s_r, t, sub_right.mx, sub_left.mx, sub_left.r+sub_right.l)

mx最终结果将是数组的值。为了找到具有最大总和的子数组的位置,您应该为每个值保留右索引和左索引,并在执行合并时相应地更新它们。考虑这个案例

sub_left.s_r range is (2,5)
sub_right.t range is (6,10)
if ( sub_right.t + sub_left.s_r > sub_right.s_r )
      s_r range = (2,10)
Run Code Online (Sandbox Code Playgroud)

这是我的实现:

#include <iostream>
using namespace std;

struct node {
    //value, right index, left index
    int value,  r,  l;
    node(int _v, int _r, int _l){
        value = _v;
        r = _r;
        l = _l;
    }
    node (){}

};

struct sub {
    // max node containing left element
    // max node containing right element
    // total node
    // max node
    node s_l, s_r, t, mx;
    sub ( node _l, node _r, node _t, node _mx ){
        s_l = _l;
        s_r = _r;
        t = _t;
        mx = _mx;
    }
    sub(){}
};


sub DivideAndConquer(int* _myArray, int left, int right)
{

    if(right == left){
        node n (_myArray[left],right,left);
        return sub( n, n, n, n);
    }
    int mid = (left+right)/2;
    sub sub_left = DivideAndConquer( _myArray, left, mid);
    sub sub_right = DivideAndConquer( _myArray, mid+1, right);

    sub cur;
    if ( sub_left.t.value + sub_right.s_l.value > sub_left.s_l.value ){
        cur.s_l.value = sub_left.t.value + sub_right.s_l.value;
        cur.s_l.r = sub_right.s_l.r;
        cur.s_l.l = sub_left.s_l.l;
    } else {
        cur.s_l = sub_left.s_l;
    }

    if ( sub_right.t.value + sub_left.s_r.value > sub_right.s_r.value ){
        cur.s_r.value = sub_right.t.value + sub_left.s_r.value;
        cur.s_r.l = sub_left.s_r.l;
        cur.s_r.r = sub_right.s_r.r;
    } else {
        cur.s_r = sub_right.s_r;
    }

    cur.t.value = sub_right.t.value + sub_left.t.value;
    cur.t.r = sub_right.t.r;
    cur.t.l = sub_left.t.l;

    if ( cur.s_r.value >= cur.s_l.value &&
         cur.s_r.value >= cur.t.value &&  
         cur.s_r.value >= sub_left.mx.value &&
         cur.s_r.value >= sub_right.mx.value ){
        cur.mx = cur.s_r;
    } else if ( cur.s_l.value >= cur.s_r.value &&
         cur.s_l.value >= cur.t.value &&  
         cur.s_l.value >= sub_left.mx.value &&
         cur.s_l.value >= sub_right.mx.value ){
        cur.mx = cur.s_l;
    } else if ( sub_left.mx.value >= cur.s_l.value &&
         sub_left.mx.value >= cur.t.value &&  
         sub_left.mx.value >= cur.s_r.value &&
         sub_left.mx.value >= sub_right.mx.value ){
        cur.mx = sub_left.mx;
    } else {
        cur.mx = sub_right.mx;
    }

    if ( sub_left.s_r.value + sub_right.s_l.value > cur.mx.value ){
        cur.mx.value = sub_left.s_r.value + sub_right.s_l.value;
        cur.mx.l = sub_left.s_r.l;
        cur.mx.r = sub_right.s_l.r;
    }
    return cur;
}

int main()
{
    // Example 1
    //const int MyArraySize = 16;
    //int MyArray[MyArraySize] = {13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7 }; // answer: Index 7 -> 10, sum = 43

    // Example 2
    const int MyArraySize = 8;
    int MyArray[MyArraySize] = { -2, -5, 6, -2, -3, 1, 5, -6 }; // answer: Index 2 -> 6, sum = 7

    sub FinalResult = DivideAndConquer(MyArray, 0,MyArraySize-1);
    std::cout << "Sum = " << FinalResult.mx.value << std::endl;
    std::cout << "( " << FinalResult.mx.l << " , " << FinalResult.mx.r << ")" << std::endl;

 //   system("pause");
    return 0;
}
Run Code Online (Sandbox Code Playgroud)

注意:该算法及时运行O(n)