Kha*_*laf 5 c++ algorithm recursion logic divide-and-conquer
对不起,我有一个使用强力算法O(n ^ 2),除法和征服O(nlogn)和Kadane算法O(n)来解决最大子阵列问题的任务.(我的代码不同).
" 例如,对于值序列,
{?2, 1, ?3, 4, ?1, 2, 1, ?5, 4}具有最大总和的连续子数组是[4, ?1, 2, 1]和6. " - 来自Wiki页面.
我完成了Kadane和BruteForce,其中我所需的输出不仅仅是找到总和,还有找到的子数组的起始索引和结束索引.
我当前的DivideAndConquer代码得到了正确的总和.但是,由于我以递归方式(当然)实现了索引,因此无法看到跟踪索引的方法.我不知道在这种情况下唯一的方法是使用全局变量(我不喜欢)..你能帮忙解决这个问题吗?或者我需要改变整个设计吗?
#include <iostream>
int DivideAndConquer(int[], int);
int main()
{
// Example 1
//const int MyArraySize = 16;
//int MyArray[MyArraySize] = {13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7 }; // answer: Index 7 -> 10, sum = 43
// Example 2
const int MyArraySize = 8;
int MyArray[MyArraySize] = { -2, -5, 6, -2, -3, 1, 5, -6 }; // answer: Index 2 -> 6, sum = 7
int FinalResult;
FinalResult = DivideAndConquer(MyArray, MyArraySize);
std::cout << "Using Divide And Conquer: With O(nlogn) Sum = " << FinalResult << "\n\n";
system("pause");
return 0;
}
int DivideAndConquer(int* _myArray, int _myArraySize)
{
if (_myArraySize == 1)
return _myArray[0];
int middle = _myArraySize / 2;
int Result_LeftPortion = DivideAndConquer(_myArray, middle);
int Result_RightPortion = DivideAndConquer(_myArray + middle, _myArraySize - middle);
int LeftSum = -9999;
int RightSum = -9999;
int TotalSum = 0;
for (int i = middle; i < _myArraySize; i++)
{
TotalSum += _myArray[i];
RightSum = TotalSum < RightSum ? RightSum : TotalSum;
}
TotalSum = 0;
for (int i = middle - 1; i >= 0; i--)
{
TotalSum += _myArray[i];
LeftSum = TotalSum < LeftSum ? LeftSum : TotalSum;
}
int PartialResult = LeftSum < RightSum ? RightSum : LeftSum;
int Result= (PartialResult < LeftSum + RightSum ? LeftSum + RightSum : PartialResult);
return Result;
}
Run Code Online (Sandbox Code Playgroud)
你的算法有逻辑问题并且不是最优的。您甚至没有使用Result_LeftPortion,Result_RightPortion值。您的最终结果始终是整个数组中RightSum、LeftSum和的最大值。TotalSum所有其他子数组中的值都将被忽略。
用分而治之的方法解决这个问题的一种方法如下。您应该为每个子数组保存四个值:
对于您要检查大小为 1 的子数组的情况,所有这些值都等于该元素的值。合并两个子数组(sub_left、sub_right)时,这些值将是:
mx最终结果将是数组的值。为了找到具有最大总和的子数组的位置,您应该为每个值保留右索引和左索引,并在执行合并时相应地更新它们。考虑这个案例
sub_left.s_r range is (2,5)
sub_right.t range is (6,10)
if ( sub_right.t + sub_left.s_r > sub_right.s_r )
s_r range = (2,10)
Run Code Online (Sandbox Code Playgroud)
这是我的实现:
#include <iostream>
using namespace std;
struct node {
//value, right index, left index
int value, r, l;
node(int _v, int _r, int _l){
value = _v;
r = _r;
l = _l;
}
node (){}
};
struct sub {
// max node containing left element
// max node containing right element
// total node
// max node
node s_l, s_r, t, mx;
sub ( node _l, node _r, node _t, node _mx ){
s_l = _l;
s_r = _r;
t = _t;
mx = _mx;
}
sub(){}
};
sub DivideAndConquer(int* _myArray, int left, int right)
{
if(right == left){
node n (_myArray[left],right,left);
return sub( n, n, n, n);
}
int mid = (left+right)/2;
sub sub_left = DivideAndConquer( _myArray, left, mid);
sub sub_right = DivideAndConquer( _myArray, mid+1, right);
sub cur;
if ( sub_left.t.value + sub_right.s_l.value > sub_left.s_l.value ){
cur.s_l.value = sub_left.t.value + sub_right.s_l.value;
cur.s_l.r = sub_right.s_l.r;
cur.s_l.l = sub_left.s_l.l;
} else {
cur.s_l = sub_left.s_l;
}
if ( sub_right.t.value + sub_left.s_r.value > sub_right.s_r.value ){
cur.s_r.value = sub_right.t.value + sub_left.s_r.value;
cur.s_r.l = sub_left.s_r.l;
cur.s_r.r = sub_right.s_r.r;
} else {
cur.s_r = sub_right.s_r;
}
cur.t.value = sub_right.t.value + sub_left.t.value;
cur.t.r = sub_right.t.r;
cur.t.l = sub_left.t.l;
if ( cur.s_r.value >= cur.s_l.value &&
cur.s_r.value >= cur.t.value &&
cur.s_r.value >= sub_left.mx.value &&
cur.s_r.value >= sub_right.mx.value ){
cur.mx = cur.s_r;
} else if ( cur.s_l.value >= cur.s_r.value &&
cur.s_l.value >= cur.t.value &&
cur.s_l.value >= sub_left.mx.value &&
cur.s_l.value >= sub_right.mx.value ){
cur.mx = cur.s_l;
} else if ( sub_left.mx.value >= cur.s_l.value &&
sub_left.mx.value >= cur.t.value &&
sub_left.mx.value >= cur.s_r.value &&
sub_left.mx.value >= sub_right.mx.value ){
cur.mx = sub_left.mx;
} else {
cur.mx = sub_right.mx;
}
if ( sub_left.s_r.value + sub_right.s_l.value > cur.mx.value ){
cur.mx.value = sub_left.s_r.value + sub_right.s_l.value;
cur.mx.l = sub_left.s_r.l;
cur.mx.r = sub_right.s_l.r;
}
return cur;
}
int main()
{
// Example 1
//const int MyArraySize = 16;
//int MyArray[MyArraySize] = {13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7 }; // answer: Index 7 -> 10, sum = 43
// Example 2
const int MyArraySize = 8;
int MyArray[MyArraySize] = { -2, -5, 6, -2, -3, 1, 5, -6 }; // answer: Index 2 -> 6, sum = 7
sub FinalResult = DivideAndConquer(MyArray, 0,MyArraySize-1);
std::cout << "Sum = " << FinalResult.mx.value << std::endl;
std::cout << "( " << FinalResult.mx.l << " , " << FinalResult.mx.r << ")" << std::endl;
// system("pause");
return 0;
}
Run Code Online (Sandbox Code Playgroud)
注意:该算法及时运行O(n)。