Blu*_*482 15 python tensorflow
我为句子分类编写了一个简单的双向lstm版本.但它一直给我"你必须为占位符张量'train_x'提供一个值"错误,它似乎来自变量初始化步骤.
data = load_data(FLAGS.data)
model = RNNClassifier(FLAGS)
init = tf.initialize_all_variables()
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
sess.run(init)
print("Graph initialized..")
print()
np.random.seed(FLAGS.random_state)
for epoch in range(FLAGS.max_max_epoch):
loss = sess.run(model.cost, feed_dict={model.train_x: data.train_x, model.train_y: data.train_y,
model.embedding_placeholder: data.glove_vec})
print("Epoch {:2d}: Loss = {:.6f} = {:.5f}".format(epoch+1, loss))
coord.request_stop()
coord.join(threads)
Run Code Online (Sandbox Code Playgroud)
和RNNClassifier
类代码(在不同的目录中):
class RNNClassifier:
def __init__(self, FLAGS):
self.params = FLAGS
with tf.device("/cpu:0"):
self.train_x = tf.placeholder(tf.int32, [6248, 42], name='train_x')
self.train_y = tf.placeholder(tf.int32, [6248, 3], name='train_y')
self.embedding_placeholder = tf.placeholder(tf.float32, [1193515, 100])
with tf.variable_scope('forward_lstm'):
lstm_fw_cell = tf.nn.rnn_cell.LSTMCell(num_units=self.params.num_hidden, use_peepholes=False,
activation=tf.nn.relu, forget_bias=0.0,
state_is_tuple=True)
with tf.variable_scope('backward_lstm'):
lstm_bw_cell = tf.nn.rnn_cell.LSTMCell(num_units=self.params.num_hidden, use_peepholes=False,
activation=tf.nn.relu, forget_bias=0.0,
state_is_tuple=True)
fw_initial_state = lstm_fw_cell.zero_state(self.params.batch_size, tf.float32)
bw_initial_state = lstm_bw_cell.zero_state(self.params.batch_size, tf.float32)
self._initial_state = [fw_initial_state, bw_initial_state]
with tf.device("/cpu:0"), tf.variable_scope('softmax'):
self.W = tf.get_variable('W', [self.params.num_hidden*2, self.params.num_classes])
self.b = tf.get_variable('b', [self.params.num_classes], initializer=tf.constant_initializer(0.0))
batched_inputs, batched_labels = self.batch_data()
embed_inputs = self.use_embedding(batched_inputs)
rnn_outputs, output_state_fw, output_state_bw = tf.nn.bidirectional_rnn(
cell_fw=lstm_fw_cell,
cell_bw=lstm_bw_cell,
inputs=embed_inputs,
initial_state_fw=fw_initial_state,
initial_state_bw=bw_initial_state
)
logits = tf.matmul(rnn_outputs[-1], self.W) + self.b
self._cost = cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf.cast(batched_labels, tf.float32)))
optimizer = tf.train.AdamOptimizer(learning_rate=0.05).minimize(cost)
def batch_data(self):
# inputs = tf.convert_to_tensor(train_x, dtype=tf.int32)
# labels = tf.convert_to_tensor(train_y, dtype=tf.int32)
batched_inputs, batched_labels = tf.train.batch(
tensors=[self._train_x, self._train_y],
batch_size=self.params.batch_size,
dynamic_pad=True,
enqueue_many=True,
name='batching'
)
return batched_inputs, batched_labels
def use_embedding(self, batched_inputs):
with tf.device("/cpu:0"), tf.name_scope("input_embedding"):
embedding = tf.get_variable("embedding", shape=[1193515, 100], trainable=False)
embedding_init = embedding.assign(self.embedding_placeholder)
embed_inputs = tf.split(1, self.params.seq_len, tf.nn.embedding_lookup(embedding_init, batched_inputs))
embed_inputs = [tf.squeeze(input_, [1]) for input_ in embed_inputs]
return embed_inputs
@property
def cost(self):
return self._cost
Run Code Online (Sandbox Code Playgroud)
输出(包括错误):
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties:
name: GeForce GTX 750 Ti
major: 5 minor: 0 memoryClockRate (GHz) 1.0845
pciBusID 0000:01:00.0
Total memory: 2.00GiB
Free memory: 1.41GiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:839] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 750 Ti, pci bus id: 0000:01:00.0)
E tensorflow/core/client/tensor_c_api.cc:485] You must feed a value for placeholder tensor 'train_x' with dtype int32 and shape [6248,42]
[[Node: train_x = Placeholder[dtype=DT_INT32, shape=[6248,42], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Graph initialized..
W tensorflow/core/framework/op_kernel.cc:936] Out of range: PaddingFIFOQueue '_0_batching/padding_fifo_queue' is closed and has insufficient elements (requested 50, current size 0)
[[Node: batching = QueueDequeueMany[_class=["loc:@batching/padding_fifo_queue"], component_types=[DT_INT32, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batching/padding_fifo_queue, batching/n)]]
W tensorflow/core/framework/op_kernel.cc:936] Out of range: PaddingFIFOQueue '_0_batching/padding_fifo_queue' is closed and has insufficient elements (requested 50, current size 0)
[[Node: batching = QueueDequeueMany[_class=["loc:@batching/padding_fifo_queue"], component_types=[DT_INT32, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batching/padding_fifo_queue, batching/n)]]
E tensorflow/core/client/tensor_c_api.cc:485] PaddingFIFOQueue '_0_batching/padding_fifo_queue' is closed and has insufficient elements (requested 50, current size 0)
[[Node: batching = QueueDequeueMany[_class=["loc:@batching/padding_fifo_queue"], component_types=[DT_INT32, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batching/padding_fifo_queue, batching/n)]]
[[Node: batching/_9 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_1191_batching", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
Traceback (most recent call last):
File "train_lstm.py", line 66, in <module>
model.embedding_placeholder: data.glove_vec})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 382, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 655, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 723, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 743, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.OutOfRangeError: PaddingFIFOQueue '_0_batching/padding_fifo_queue' is closed and has insufficient elements (requested 50, current size 0)
[[Node: batching = QueueDequeueMany[_class=["loc:@batching/padding_fifo_queue"], component_types=[DT_INT32, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](batching/padding_fifo_queue, batching/n)]]
[[Node: batching/_9 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/gpu:0", send_device="/job:localhost/replica:0/task:0/cpu:0", send_device_incarnation=1, tensor_name="edge_1191_batching", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
Caused by op u'batching', defined at:
File "train_lstm.py", line 49, in <module>
model = RNNClassifier(FLAGS)
File "/home/ccrmad/Code/TDLSTM/models/rnn_classifier.py", line 34, in __init__
batched_inputs, batched_labels = self.batch_data()
File "/home/ccrmad/Code/TDLSTM/models/rnn_classifier.py", line 74, in batch_data
name='batching'
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/input.py", line 595, in batch
dequeued = queue.dequeue_many(batch_size, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/data_flow_ops.py", line 435, in dequeue_many
self._queue_ref, n=n, component_types=self._dtypes, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 867, in _queue_dequeue_many
timeout_ms=timeout_ms, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2310, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1232, in __init__
self._traceback = _extract_stack()
Run Code Online (Sandbox Code Playgroud)
我之前尝试过移动train_x
和train_y
占位符初始化init = tf.initialize_all_variables()
并将它们作为两个args提供给RNNClassifier(),但它仍然会给出相同的错误.为什么?
看起来问题出在这个方法中RNNClassifier
:
def batch_data(self):
# ...
batched_inputs, batched_labels = tf.train.batch(
tensors=[self._train_x, self._train_y],
batch_size=self.params.batch_size,
dynamic_pad=True,
enqueue_many=True,
name='batching')
Run Code Online (Sandbox Code Playgroud)
的两个张量参数tf.train.batch()
是self._train_x
和self._train_y
。在RNNClassifier
构造函数中,您似乎将它们创建为tf.placeholder()
张量:
def __init__(self, FLAGS):
# ...
with tf.device("/cpu:0"):
self.train_x = tf.placeholder(tf.int32, [6248, 42], name='train_x')
self.train_y = tf.placeholder(tf.int32, [6248, 3], name='train_y')
Run Code Online (Sandbox Code Playgroud)
...虽然我假设self._train_x
和之间的区别self.train_x
是复制粘贴错误,因为self._train_x
似乎没有在其他地方定义。
现在,令人惊讶的事情之一tf.train.batch()
是它在一个完全独立的线程(称为“队列运行程序”)中消耗其输入,并在您调用 时启动tf.train.start_queue_runners()
。该线程调用Session.run()
依赖于占位符的子图,但不知道如何提供这些占位符,因此此调用失败,导致您看到错误。
那么你应该如何修复它呢?一种选择是使用“馈送队列运行器”,对此有实验支持。一个更简单的选择是使用tf.train.slice_input_producer()
从输入数据生成切片,如下所示:
def batch_data(self, train_x, train_y):
input_slice, label_slice = tf.train.slice_input_producer([train_x, train_y])
batched_inputs, batched_labels = tf.train.batch(
tensors=[input_slice, label_slice],
batch_size=self.params.batch_size,
dynamic_pad=False, # All rows are the same shape.
enqueue_many=False, # tf.train.slice_input_producer() produces one row at a time.
name='batching')
return batched_inputs, batched_labels
# ...
# Create batches from the entire training data, where `array_input` and
# `array_labels` are two NumPy arrays.
batched_inputs, batched_labels = model.batch_data(array_input, array_labels)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1950 次 |
最近记录: |