Rya*_*ght 6 r pandoc knitr r-markdown
我经常发现自己使用dplyr在R中计算摘要统计信息,然后将结果写入csv并将其加载到Tableau中以生成表格,因为Tableau的表格非常简单易用.我宁愿直接在R中生成表格.
R中的分组表有一个简单的解决方案吗?
生成我想要的数据非常容易:
library(tidyr)
library(dplyr)
summary_table <- iris %>%
gather(measure, value, -Species) %>%
separate(measure, into=c("attribute", "dimension")) %>%
group_by(Species, attribute, dimension) %>%
summarise(mean=mean(value))
summary_table
Source: local data frame [12 x 4]
Groups: Species, attribute [?]
Species attribute dimension mean
<fctr> <chr> <chr> <dbl>
1 setosa Petal Length 1.462
2 setosa Petal Width 0.246
3 setosa Sepal Length 5.006
4 setosa Sepal Width 3.428
5 versicolor Petal Length 4.260
6 versicolor Petal Width 1.326
7 versicolor Sepal Length 5.936
8 versicolor Sepal Width 2.770
9 virginica Petal Length 5.552
10 virginica Petal Width 2.026
11 virginica Sepal Length 6.588
12 virginica Sepal Width 2.974
Run Code Online (Sandbox Code Playgroud)
现在我想把它呈现为:
我想尝试一些不同的组织方式,所以我希望能够轻松地对行而不是列进行分组
分组行版本的主要功能包括:
我是rmarkdown的新手,但最终的目标是在HTML文档中使用它.
这可能吗?
以下是使用htmlTable包创建每个表的方法。我不确定如何在物种之间添加水平线,但我确实添加了斑马阴影。
这是rmarkdown文件:
---
title: "<h3>Untitled</h3>"
author: "Author"
date: "September 3, 2016"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, message=FALSE, warning=FALSE)
```
```{r}
library(tidyr)
library(dplyr)
library(reshape2)
library(htmlTable)
```
```{r}
st = iris %>%
gather(measure, value, -Species) %>%
separate(measure, into=c("attribute", "dimension")) %>%
group_by(Species, attribute, dimension) %>%
summarise(mean=mean(value)) %>%
spread(dimension, mean)
# Keep only first value of outer grouping column
st = st %>%
group_by(Species) %>%
mutate(count=1:n()) %>%
ungroup %>%
mutate(Species = ifelse(count==1, as.character(Species), NA)) %>%
select(-count)
# Remove names of grouping columns
names(st)[1:2] = ""
# Round numeric columns to two decimal places
st[,sapply(st,is.numeric)] = sapply(st[,sapply(st,is.numeric)], function(x) sprintf("%1.2f",x))
htmlTable(st, rnames=FALSE, align="llrr", align.header="llrr",
col.rgroup = rep(c("none", "gray93"), each=2),
css.cell = c("padding-left: 0em","padding-left: 1em",rep("padding-left: 2em",2)))
```
```{r}
# Another option
htmlTable(st[,-1], rnames=FALSE, align="llrr", align.header="lrr",
n.rgroup=rep(2,3),
rgroup=rep(unique(iris$Species),2),
#col.rgroup = c("none","gray93"), # If you want to add alternating shading
css.cell=c("padding-left: 0.5em","padding-left: 4em","padding-left: 1.5em"))
```
```{r}
st = iris %>%
melt(id.var="Species") %>%
group_by(Species, variable) %>%
summarise(mean=mean(value)) %>%
dcast(Species ~ variable)
names(st)[1] = ""
# Round numeric columns to two decimal places
st[,sapply(st,is.numeric)] = sapply(st[,sapply(st,is.numeric)], function(x) sprintf("%1.2f",x))
# Set up grouping columns and column names
group_col = gsub("(.*)\\..*", "\\1", names(st))
group_col = factor(group_col, levels=unique(group_col))
names(st) = gsub(".*\\.", "", names(st))
htmlTable(st, rnames=FALSE, align="lrrrr",
align.header="lrrrr",
cgroup=unique(group_col), n.cgroup=unclass(table(group_col)),
css.cell = c("padding-left: 0em","padding-left: 1.5em", rep("padding-left: 2em",3)))
```
Run Code Online (Sandbox Code Playgroud)
这是输出: