Nam*_*ena 20 python dataframe pandas
这个问题与之前发布的相同.我想连接三列而不是连接两列:
这是结合两列:
df = DataFrame({'foo':['a','b','c'], 'bar':[1, 2, 3], 'new':['apple', 'banana', 'pear']})
df['combined']=df.apply(lambda x:'%s_%s' % (x['foo'],x['bar']),axis=1)
df
bar foo new combined
0 1 a apple a_1
1 2 b banana b_2
2 3 c pear c_3
Run Code Online (Sandbox Code Playgroud)
我想用这个命令组合三个列,但它不起作用,任何想法?
df['combined']=df.apply(lambda x:'%s_%s' % (x['bar'],x['foo'],x['new']),axis=1)
Run Code Online (Sandbox Code Playgroud)
shi*_*vsn 35
你可以简单地做:
In[17]:df['combined']=df['bar'].astype(str)+'_'+df['foo']+'_'+df['new']
In[17]:df
Out[18]:
bar foo new combined
0 1 a apple 1_a_apple
1 2 b banana 2_b_banana
2 3 c pear 3_c_pear
Run Code Online (Sandbox Code Playgroud)
All*_*len 25
使用的另一种解决方案DataFrame.apply(),当您想加入更多的列时,键入更少,可扩展性更高:
cols = ['foo', 'bar', 'new']
df['combined'] = df[cols].apply(lambda row: '_'.join(row.values.astype(str)), axis=1)
Run Code Online (Sandbox Code Playgroud)
只是想对两种解决方案进行时间比较(对于30K行DF):
In [1]: df = DataFrame({'foo':['a','b','c'], 'bar':[1, 2, 3], 'new':['apple', 'banana', 'pear']})
In [2]: big = pd.concat([df] * 10**4, ignore_index=True)
In [3]: big.shape
Out[3]: (30000, 3)
In [4]: %timeit big.apply(lambda x:'%s_%s_%s' % (x['bar'],x['foo'],x['new']),axis=1)
1 loop, best of 3: 881 ms per loop
In [5]: %timeit big['bar'].astype(str)+'_'+big['foo']+'_'+big['new']
10 loops, best of 3: 44.2 ms per loop
Run Code Online (Sandbox Code Playgroud)
还有一些选择:
In [6]: %timeit big.ix[:, :-1].astype(str).add('_').sum(axis=1).str.cat(big.new)
10 loops, best of 3: 72.2 ms per loop
In [11]: %timeit big.astype(str).add('_').sum(axis=1).str[:-1]
10 loops, best of 3: 82.3 ms per loop
Run Code Online (Sandbox Code Playgroud)
如果您想合并更多的列,使用Series方法str.cat可能很方便:
df["combined"] = df["foo"].str.cat(df[["bar", "new"]].astype(str), sep="_")
Run Code Online (Sandbox Code Playgroud)
基本上,您选择第一列(如果尚未为type str,则需要添加.astype(str)),然后将其他列(由可选的分隔符分隔)添加到该列。
首先将列转换为 str。然后使用 .T.agg('_'.join) 函数将它们连接起来。更多信息可以在这里获取
# Initialize columns
cols_concat = ['first_name', 'second_name']
# Convert them to type str
df[cols_concat] = df[cols_concat].astype('str')
# Then concatenate them as follows
df['new_col'] = df[cols_concat].T.agg('_'.join)
Run Code Online (Sandbox Code Playgroud)
我想你错过了一个%s
df['combined']=df.apply(lambda x:'%s_%s_%s' % (x['bar'],x['foo'],x['new']),axis=1)
Run Code Online (Sandbox Code Playgroud)
@allen 给出的答案相当通用,但对于较大的数据帧可能缺乏性能:
确实减少了很多更好:
from functools import reduce
import pandas as pd
# make data
df = pd.DataFrame(index=range(1_000_000))
df['1'] = 'CO'
df['2'] = 'BOB'
df['3'] = '01'
df['4'] = 'BILL'
def reduce_join(df, columns):
assert len(columns) > 1
slist = [df[x].astype(str) for x in columns]
return reduce(lambda x, y: x + '_' + y, slist[1:], slist[0])
def apply_join(df, columns):
assert len(columns) > 1
return df[columns].apply(lambda row:'_'.join(row.values.astype(str)), axis=1)
# ensure outputs are equal
df1 = reduce_join(df, list('1234'))
df2 = apply_join(df, list('1234'))
assert df1.equals(df2)
# profile
%timeit df1 = reduce_join(df, list('1234')) # 733 ms
%timeit df2 = apply_join(df, list('1234')) # 8.84 s
Run Code Online (Sandbox Code Playgroud)
可能最快的解决方案是在纯 Python 中操作:
Series(
map(
'_'.join,
df.values.tolist()
# when non-string columns are present:
# df.values.astype(str).tolist()
),
index=df.index
)
Run Code Online (Sandbox Code Playgroud)
与@MaxU 答案的比较(使用big具有数字和字符串列的数据框):
%timeit big['bar'].astype(str) + '_' + big['foo'] + '_' + big['new']
# 29.4 ms ± 1.08 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit Series(map('_'.join, big.values.astype(str).tolist()), index=big.index)
# 27.4 ms ± 2.36 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Run Code Online (Sandbox Code Playgroud)
与@derchambers 答案的比较(使用他们的df数据框,其中所有列都是字符串):
from functools import reduce
def reduce_join(df, columns):
slist = [df[x] for x in columns]
return reduce(lambda x, y: x + '_' + y, slist[1:], slist[0])
def list_map(df, columns):
return Series(
map(
'_'.join,
df[columns].values.tolist()
),
index=df.index
)
%timeit df1 = reduce_join(df, list('1234'))
# 602 ms ± 39 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit df2 = list_map(df, list('1234'))
# 351 ms ± 12.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
70370 次 |
| 最近记录: |