Ann*_*rie 3 r covariance multi-level nlme
我有一个大约300名患者的多级重复测量数据集,每个患者有多达10个预测肌钙蛋白升高的重复测量.数据集中还有其他变量,但我没有在此处包含它们.我试图用来nlme创建随机斜率,随机截距模型,其中患者之间的效果不同,并且不同患者的时间效果不同.当我尝试引入一阶协方差结构以允许由于时间的测量相关时,我得到以下错误消息.
Error in `coef<-.corARMA`(`*tmp*`, value = value[parMap[, i]]) : Coefficient matrix not invertible
Run Code Online (Sandbox Code Playgroud)
我已经包含了我的代码和数据集的样本,我将非常感谢任何智慧的话语.
#baseline model includes only the intercept. Random slopes - intercept varies across patients
randomintercept <- lme(troponin ~ 1,
data = df, random = ~1|record_id, method = "ML",
na.action = na.exclude,
control = list(opt="optim"))
#random intercept and time as fixed effect
timeri <- update(randomintercept,.~. + day)
#random slopes and intercept: effect of time is different in different people
timers <- update(timeri, random = ~ day|record_id)
#model covariance structure. corAR1() first order autoregressive covariance structure, timepoints equally spaced
armodel <- update(timers, correlation = corAR1(0, form = ~day|record_id))
Error in `coef<-.corARMA`(`*tmp*`, value = value[parMap[, i]]) : Coefficient matrix not invertible
Run Code Online (Sandbox Code Playgroud)
数据:
record_id day troponin
1 1 32
2 0 NA
2 1 NA
2 2 NA
2 3 8
2 4 6
2 5 7
2 6 7
2 7 7
2 8 NA
2 9 9
3 0 14
3 1 1167
3 2 1935
4 0 19
4 1 16
4 2 29
5 0 NA
5 1 17
5 2 47
5 3 684
6 0 46
6 1 45440
6 2 47085
7 0 48
7 1 87
7 2 44
7 3 20
7 4 15
7 5 11
7 6 10
7 7 11
7 8 197
8 0 28
8 1 31
9 0 NA
9 1 204
10 0 NA
10 1 19
Run Code Online (Sandbox Code Playgroud)
你可以,如果你改变你的优化器"nlminb"符合这个(或至少它的工作原理与缩减数据集合你贴).
armodel <- update(timers,
correlation = corAR1(0, form = ~day|record_id),
control=list(opt="nlminb"))
Run Code Online (Sandbox Code Playgroud)
但是,如果你看一下拟合模型,你会发现你有问题 - 估计的AR1参数是-1,随机截距和斜率项与r = 0.998相关.
我认为问题在于数据的性质.大多数数据似乎在10-50范围内,但是有一个或两个数量级的偏移(例如个体6,高达约45000).可能很难将模型拟合到这个尖锐的数据.我强烈建议对数据进行日志转换; 标准诊断图(plot(randomintercept))看起来像这样:
而适合对数尺度
rlog <- update(randomintercept,log10(troponin) ~ .)
plot(rlog)
Run Code Online (Sandbox Code Playgroud)
虽然仍有一些异方差性的证据,但有些更合理.
AR +随机斜率模型适合:
ar.rlog <- update(rlog,
random = ~day|record_id,
correlation = corAR1(0, form = ~day|record_id))
## Linear mixed-effects model fit by maximum likelihood
## ...
## Random effects:
## Formula: ~day | record_id
## Structure: General positive-definite, Log-Cholesky parametrization
## StdDev Corr
## (Intercept) 0.1772409 (Intr)
## day 0.6045765 0.992
## Residual 0.4771523
##
## Correlation Structure: ARMA(1,0)
## Formula: ~day | record_id
## Parameter estimate(s):
## Phi1
## 0.09181557
## ...
Run Code Online (Sandbox Code Playgroud)
快速浏览一下就可以intervals(ar.rlog)看出自回归参数的置信区间是(-0.52,0.65),所以可能不值得保持......
随着模型中的随机斜率,异方差性似乎不再成问题......
plot(rlog,sqrt(abs(resid(.)))~fitted(.),type=c("p","smooth"))
Run Code Online (Sandbox Code Playgroud)