我正在Amazon EMR 5.0的Spark 2.0上尝试一个超级简单的测试程序:
from pyspark.sql.types import Row
from pyspark.sql.types import *
import pyspark.sql.functions as spark_functions
schema = StructType([
StructField("cola", StringType()),
StructField("colb", IntegerType()),
])
rows = [
Row("alpha", 1),
Row("beta", 2),
Row("gamma", 3),
Row("delta", 4)
]
data_frame = spark.createDataFrame(rows, schema)
print("count={}".format(data_frame.count()))
data_frame.write.save("s3a://test3/test_data.parquet", mode="overwrite")
print("done")
Run Code Online (Sandbox Code Playgroud)
结果是:
count=4
Py4JJavaError: An error occurred while calling o85.save.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelationCommand.scala:149)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1.apply(InsertIntoHadoopFsRelationCommand.scala:115)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1.apply(InsertIntoHadoopFsRelationCommand.scala:115)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:115)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:60)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:58)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:136)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:133)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:114)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:86)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:487)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:211)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:194)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:128)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:211)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.IllegalArgumentException: bound must be positive
at java.util.Random.nextInt(Random.java:388)
at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.confChanged(LocalDirAllocator.java:305)
at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:344)
at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.createTmpFileForWrite(LocalDirAllocator.java:416)
at org.apache.hadoop.fs.LocalDirAllocator.createTmpFileForWrite(LocalDirAllocator.java:198)
at org.apache.hadoop.fs.s3a.S3AOutputStream.<init>(S3AOutputStream.java:87)
at org.apache.hadoop.fs.s3a.S3AFileSystem.create(S3AFileSystem.java:421)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:894)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:791)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:780)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJob(FileOutputCommitter.java:336)
at org.apache.parquet.hadoop.ParquetOutputCommitter.commitJob(ParquetOutputCommitter.java:46)
at org.apache.spark.sql.execution.datasources.BaseWriterContainer.commitJob(WriterContainer.scala:222)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelationCommand.scala:144)
... 29 more
(<class 'py4j.protocol.Py4JJavaError'>, Py4JJavaError(u'An error occurred while calling o85.save.\n', JavaObject id=o86), <traceback object at 0x7fa65dec5368>)
Run Code Online (Sandbox Code Playgroud)
发生了同样的问题,经过很多混乱之后,s3://和s3n://正常工作。但是它们比s3a://慢很多。。。使我可以使用s3a://的唯一方法是设置缓冲区目录,这样它就不会直接从内存中进行快速复制-
hadoopConf=sc._jsc.hadoopConfiguration()
hadoopConf.set("fs.s3a.buffer.dir", "/home/hadoop,/tmp")
Run Code Online (Sandbox Code Playgroud)
不幸的是,启用该功能后,它的速度不会比普通的s3 / s3n快多少!
编辑:添加此内容也可以摆脱错误,意识到我以为它正在快速复制。不幸的是没有更快... hadoopConf.set(“ fs.s3a.fast.upload”,“ true”)
| 归档时间: |
|
| 查看次数: |
1343 次 |
| 最近记录: |