use*_*478 5 python missing-data dataframe pandas
我有一个数据集,在其中执行主成分分析(PCA)。ValueError当我尝试转换数据时会收到一条消息。以下是一些代码:
import pandas as pd
import numpy as np
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA as sklearnPCA
data = pd.read_csv('test.csv',header=0)
X = data.ix[:,0:1000].values # values of 1000 predictor variables
Y = data.ix[:,1000].values # values of binary outcome variable
sklearn_pca = sklearnPCA(n_components=2)
X_std = StandardScaler().fit_transform(X)
Run Code Online (Sandbox Code Playgroud)
我在这里收到以下错误消息:
import pandas as pd
import numpy as np
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA as sklearnPCA
data = pd.read_csv('test.csv',header=0)
X = data.ix[:,0:1000].values # values of 1000 predictor variables
Y = data.ix[:,1000].values # values of binary outcome variable
sklearn_pca = sklearnPCA(n_components=2)
X_std = StandardScaler().fit_transform(X)
Run Code Online (Sandbox Code Playgroud)
因此,我然后检查了原始数据集是否具有任何NaN值:
print(data.isnull().values.any()) # prints True
data.fillna(0) # replace NaN values with 0
print(data.isnull().values.any()) # prints True
Run Code Online (Sandbox Code Playgroud)
我不明白即使将NaN值替换为0后,为什么data.isnull().values.any()仍仍在打印True。
有两种方法可以实现,请尝试就地替换:
import pandas as pd
data = pd.DataFrame(data=[0,float('nan'),2,3])
print('BEFORE:', data.isnull().values.any()) # prints True
# fillna function
data.fillna(0, inplace=True)
print('AFTER:',data.isnull().values.any()) # prints False now :)
Run Code Online (Sandbox Code Playgroud)
或者,使用返回的对象:
data = data.fillna(0)
Run Code Online (Sandbox Code Playgroud)
两种情况的结果如下:
BEFORE: True
AFTER: False
Run Code Online (Sandbox Code Playgroud)
您必须用返回的对象替换数据fillna
小型再现器:
import pandas as pd
data = pd.DataFrame(data=[0,float('nan'),2,3])
print(data.isnull().values.any()) # prints True
data = data.fillna(0) # replace NaN values with 0
print(data.isnull().values.any()) # prints False now :)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10452 次 |
| 最近记录: |