熊猫dataframe fillna()不起作用?

use*_*478 5 python missing-data dataframe pandas

我有一个数据集,在其中执行主成分分析(PCA)。ValueError当我尝试转换数据时会收到一条消息。以下是一些代码:

import pandas as pd
import numpy as np
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA as sklearnPCA

data = pd.read_csv('test.csv',header=0)
X = data.ix[:,0:1000].values   # values of 1000 predictor variables
Y = data.ix[:,1000].values     # values of binary outcome variable
sklearn_pca = sklearnPCA(n_components=2)
X_std = StandardScaler().fit_transform(X)
Run Code Online (Sandbox Code Playgroud)

我在这里收到以下错误消息:

import pandas as pd
import numpy as np
import matplotlib as mpl
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA as sklearnPCA

data = pd.read_csv('test.csv',header=0)
X = data.ix[:,0:1000].values   # values of 1000 predictor variables
Y = data.ix[:,1000].values     # values of binary outcome variable
sklearn_pca = sklearnPCA(n_components=2)
X_std = StandardScaler().fit_transform(X)
Run Code Online (Sandbox Code Playgroud)

因此,我然后检查了原始数据集是否具有任何NaN值:

print(data.isnull().values.any())   # prints True
data.fillna(0)                      # replace NaN values with 0
print(data.isnull().values.any())   # prints True
Run Code Online (Sandbox Code Playgroud)

我不明白即使将NaN值替换为0后,为什么data.isnull().values.any()仍仍在打印True

Jes*_*sse 6

有两种方法可以实现,请尝试就地替换:

import pandas as pd

data = pd.DataFrame(data=[0,float('nan'),2,3])   
print('BEFORE:', data.isnull().values.any())   # prints True

# fillna function
data.fillna(0, inplace=True)

print('AFTER:',data.isnull().values.any())   # prints False now :)
Run Code Online (Sandbox Code Playgroud)

或者,使用返回的对象:

data = data.fillna(0)
Run Code Online (Sandbox Code Playgroud)

两种情况的结果如下:

BEFORE: True
AFTER: False
Run Code Online (Sandbox Code Playgroud)


Jea*_*bre 3

您必须用返回的对象替换数据fillna

小型再现器:

import pandas as pd

data = pd.DataFrame(data=[0,float('nan'),2,3])

print(data.isnull().values.any())   # prints True
data = data.fillna(0)                      # replace NaN values with 0
print(data.isnull().values.any())   # prints False now :)
Run Code Online (Sandbox Code Playgroud)