蛮力,单线程素数分解

Mic*_*eyn 16 c++ algorithm prime-factoring

需要考虑的是以下函数,该函数可用于(相对快速地)将64位无符号整数分解为其素因子.注意,因子分解不是概率性的(即,它是精确的).在现代硬件上,该算法已经足够快,可以在几秒钟内找到一个数字是素数或几乎没有很大的因子.

问题:可以对所提出的算法进行任何改进,同时保持它是单线程的,这样它可以更快地考虑(任意)非常大的无符号64位整数,最好不使用概率方法(例如,Miller-Rabin)确定素性?

// system specific typedef for ulong should go here (or use boost::uint64_t)
typedef unsigned __int64 ulong;
typedef std::vector<ulong> ULongVector;

// Caller needs to pass in an empty factors vector
void GetFactors(ULongVector &factors, ulong num)
{
  // Num has to be at least 2 to contain "prime" factors
  if (num<2)
    return;

  ulong workingNum=num;
  ulong nextOffset=2; // Will be used to skip multiples of 3, later

  // Factor out factors of 2
  while (workingNum%2==0)
  {
    factors.push_back(2);
    workingNum/=2;
  }

  // Factor out factors of 3
  while (workingNum%3==0)
  {
    factors.push_back(3);
    workingNum/=3;
  }

  // If all of the factors were 2s and 3s, done...
  if (workingNum==1)
    return;

  // sqrtNum is the (inclusive) upper bound of our search for factors
  ulong sqrtNum=(ulong) sqrt(double(workingNum+0.5));

  // Factor out potential factors that are greate than or equal to 5
  // The variable n represents the next potential factor to be tested
  for (ulong n=5;n<=sqrtNum;)
  {
    // Is n a factor of the current working number?
    if (workingNum%n==0)
    {
      // n is a factor, so add it to the list of factors
      factors.push_back(n);

      // Divide current working number by n, to get remaining number to factor
      workingNum/=n;

      // Check if we've found all factors
      if (workingNum==1)
        return;

      // Recalculate the new upper bound for remaining factors
      sqrtNum=(ulong) sqrt(double(workingNum+0.5));

      // Recheck if n is a factor of the new working number, 
      // in case workingNum contains multiple factors of n
      continue;
    }

    // n is not or is no longer a factor, try the next odd number 
    // that is not a multiple of 3
    n+=nextOffset;
    // Adjust nextOffset to be an offset from n to the next non-multiple of 3
    nextOffset=(nextOffset==2UL ? 4UL : 2UL);
  }

  // Current workingNum is prime, add it as a factor
  factors.push_back(workingNum);
}
Run Code Online (Sandbox Code Playgroud)

谢谢

编辑:我添加了更多评论.向量通过引用传入的原因是允许向量在调用之间重用,并避免动态分配.向量未在函数中清空的原因是允许将当前"num"因子附加到向量中已有的因子的奇怪要求.

函数本身并不漂亮,可以重构,但问题是如何使算法更快.所以,请不要提出如何使函数更漂亮,可读或C++的建议.这是孩子的游戏.改进这种算法,使其能够更快地找到(已证实的)因素是困难的部分.

更新:到目前为止Potatoswatter有一些很好的解决方案,请务必查看底部附近的MMX解决方案.

Pot*_*ter 19

将这种方法与(预先生成的)筛子进行比较.模数很昂贵,因此这两种方法基本上都做了两件事:生成潜在因素,并执行模运算.两个程序都应该以比模数采用更少的周期合理地生成新的候选因子,因此任一程序都是模数约束的.

给定的方法过滤掉所有整数的恒定比例,即2和3的倍数,或75%.四分之一(给定)数字用作模运算符的参数.我称之为跳过滤镜.

另一方面,筛子仅使用素数作为模运算符的参数,并且连续素数之间的平均差异素数定理控制为1/ln(N).例如,e ^ 20不到5亿,因此超过5亿的人有5%的机会成为素数.如果考虑所有高达2 ^ 32的数字,5%是一个很好的经验法则.

因此,div筛选器的操作时间将比跳过滤器少5倍.要考虑的下一个因素是筛子产生质数的速度,即从内存或磁盘读取它们.如果取一个素数比4 div秒快,则筛子更快.根据我的表div,我的Core2上的吞吐量最多每12个周期一个.这些将是严格的划分问题,所以让我们保守地预算每个素数50个周期.对于2.5 GHz处理器,这是20纳秒.

在20 ns内,50 MB /秒的硬盘驱动器可以读取大约一个字节.简单的解决方案是每个素数使用4个字节,因此驱动器会更慢.但是,我们可以更聪明.如果我们想按顺序编码所有素数,我们可以只编码它们的差异.同样,预期的差异是1/ln(N).而且,它们都是均匀的,这节省了额外的一点.它们永远不会为零,这使得多字节编码的扩展免费.因此,每个素数使用一个字节,最多512个差异可以存储在一个字节中,根据维基百科的文章,这可以达到303371455241 .

因此,根据硬盘驱动器,存储的素数列表在验证素数时的速度应大致相等.如果它可以存储在RAM中(它是203 MB,因此后续运行可能会达到磁盘缓存),那么问题就完全消失了,因为FSB速度通常与处理器速度相差小于FSB宽度(以字节为单位) - 即,FSB每个周期可以传输多个素数.然后改进的因素是除法运算的减少,即五次.下面的实验结果证实了这一点.

当然,那就是多线程.可以将素数或跳过过滤候选者的范围分配给不同的线程,使得任一方法都令人尴尬地平行.没有优化不涉及增加并行分频器电路的数量,除非你以某种方式消除模数.

这是一个这样的程序.这是模板化的,所以你可以添加bignums.

/*
 *  multibyte_sieve.cpp
 *  Generate a table of primes, and use it to factorize numbers.
 *
 *  Created by David Krauss on 10/12/10.
 *
 */

#include <cmath>
#include <bitset>
#include <limits>
#include <memory>
#include <fstream>
#include <sstream>
#include <iostream>
#include <iterator>
#include <stdint.h>
using namespace std;

char const primes_filename[] = "primes";
enum { encoding_base = (1<< numeric_limits< unsigned char >::digits) - 2 };

template< typename It >
unsigned decode_gap( It &stream ) {
    unsigned gap = static_cast< unsigned char >( * stream ++ );

    if ( gap ) return 2 * gap; // only this path is tested

    gap = ( decode_gap( stream )/2-1 ) * encoding_base; // deep recursion
    return gap + decode_gap( stream ); // shallow recursion
}

template< typename It >
void encode_gap( It &stream, uint32_t gap ) {
    unsigned len = 0, bytes[4];

    gap /= 2;
    do {
        bytes[ len ++ ] = gap % encoding_base;
        gap /= encoding_base;
    } while ( gap );

    while ( -- len ) { // loop not tested
        * stream ++ = 0;
        * stream ++ = bytes[ len + 1 ];
    }
    * stream ++ = bytes[ 0 ];
}

template< size_t lim >
void generate_primes() {
    auto_ptr< bitset< lim / 2 > > sieve_p( new bitset< lim / 2 > );
    bitset< lim / 2 > &sieve = * sieve_p;

    ofstream out_f( primes_filename, ios::out | ios::binary );
    ostreambuf_iterator< char > out( out_f );

    size_t count = 0;

    size_t last = sqrtl( lim ) / 2 + 1, prev = 0, x = 1;
    for ( ; x != last; ++ x ) {
        if ( sieve[ x ] ) continue;
        size_t n = x * 2 + 1; // translate index to number
        for ( size_t m = x + n; m < lim/2; m += n ) sieve[ m ] = true;
        encode_gap( out, ( x - prev ) * 2 );
        prev = x;
    }

    for ( ; x != lim / 2; ++ x ) {
        if ( sieve[ x ] ) continue;
        encode_gap( out, ( x - prev ) * 2 );
        prev = x;
    }

    cout << prev * 2 + 1 << endl;
}

template< typename I >
void factorize( I n ) {
    ifstream in_f( primes_filename, ios::in | ios::binary );
    if ( ! in_f ) {
        cerr << "Could not open primes file.\n"
                "Please generate it with 'g' command.\n";
        return;
    }

    while ( n % 2 == 0 ) {
        n /= 2;
        cout << "2 ";
    }
    unsigned long factor = 1;

    for ( istreambuf_iterator< char > in( in_f ), in_end; in != in_end; ) {
        factor += decode_gap( in );

        while ( n % factor == 0 ) {
            n /= factor;
            cout << factor << " ";
        }

        if ( n == 1 ) goto finish;
    }

    cout << n;
finish:
    cout << endl;
}

int main( int argc, char *argv[] ) {
    if ( argc != 2 ) goto print_help;

    unsigned long n;

    if ( argv[1][0] == 'g' ) {
        generate_primes< (1ul<< 32) >();
    } else if ( ( istringstream( argv[1] ) >> n ).rdstate() == ios::eofbit )
        factorize( n );
    } else goto print_help;

    return 0;

print_help:
    cerr << "Usage:\n\t" << argv[0] << " <number> -- factorize number.\n"
            "\t" << argv[0] << " g -- generate primes file in current directory.\n";
}
Run Code Online (Sandbox Code Playgroud)

2.2 GHz MacBook Pro的性能:

dkrauss$ time ./multibyte_sieve g
4294967291

real    2m8.845s
user    1m15.177s
sys    0m2.446s
dkrauss$ time ./multibyte_sieve 18446743721522234449
4294967231 4294967279 

real    0m5.405s
user    0m4.773s
sys 0m0.458s
dkrauss$ time ./mike 18446743721522234449
4294967231 4294967279
real    0m25.147s
user    0m24.170s
sys 0m0.096s
Run Code Online (Sandbox Code Playgroud)


Pot*_*ter 9

我的另一个答案是相当长的,与此完全不同,所以这里有别的东西.

这个程序不是仅过滤掉前两个素数的倍数,或者每个字节编码所有相关素数,而是过滤掉所有适合8位的质数的倍数,特别是2到211.所以不要过去33%的数字,这大约10%传递给分部运营商.

素数保存在三个SSE寄存器中,其运行计数器的模数保持在另外三个.如果具有计数器的任何素数的模数等于零,则计数器不能是素数.此外,如果任何模数等于1,则(计数器+ 2)不能是素数等,直到(计数器+30).偶数会被忽略,并且会跳过+3,+ 6和+5等偏移量.矢量处理允许一次更新16个字节大小的变量.

抛出一个厨房水槽完全微观优化(但没有更多的平台特定于内联指令),我得到了1.78倍的性能提升(24秒对13.4秒我的笔记本电脑).如果使用bignum库(即使是非常快的库),优势也更大.请参阅下面的更具可读性的预优化版本.

/*
 *  factorize_sse.cpp
 *  Filter out multiples of the first 47 primes while factorizing a number.
 *
 *  Created by David Krauss on 10/14/10.
 *
 */

#include <cmath>
#include <sstream>
#include <iostream>
#include <xmmintrin.h>
using namespace std;

inline void remove_factor( unsigned long &n, unsigned long factor ) __attribute__((always_inline));
void remove_factor( unsigned long &n, unsigned long factor ) {
    while ( n % factor == 0 ) {
        n /= factor;
        cout << factor << " ";
    }
}

int main( int argc, char *argv[] ) {
    unsigned long n;

    if ( argc != 2
        || ( istringstream( argv[1] ) >> n >> ws ).rdstate() != ios::eofbit ) {
        cerr << "Usage: " << argv[0] << " <number>\n";
        return 1;
    }

    int primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
                     53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
                     131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211 };
    for ( int *p = primes; p < primes + sizeof primes/sizeof *primes; ++ p ) {
        remove_factor( n, * p );
    }

    //int histo[8] = {}, total = 0;

    enum { bias = 15 - 128 };
    __m128i const prime1 =       _mm_set_epi8( 21, 21, 21, 22, 22, 26, 26, 17, 19, 23, 29, 31, 37, 41, 43, 47 ),
            prime2 =             _mm_set_epi8( 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127 ),
            prime3 =             _mm_set_epi8( 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211 ),
            vbias = _mm_set1_epi8( bias ),
            v3 = _mm_set1_epi8( 3+bias ), v5 = _mm_set1_epi8( 5+bias ), v6 = _mm_set1_epi8( 6+bias ), v8 = _mm_set1_epi8( 8+bias ),
            v9 = _mm_set1_epi8( 9+bias ), v11 = _mm_set1_epi8( 11+bias ), v14 = _mm_set1_epi8( 14+bias ), v15 = _mm_set1_epi8( 15+bias );
    __m128i mod1 = _mm_add_epi8( _mm_set_epi8(  3, 10, 17,  5, 16,  6, 19,  8,  9, 11, 14, 15, 18, 20, 21, 23 ), vbias ),
            mod2 = _mm_add_epi8( _mm_set_epi8( 26, 29, 30, 33, 35, 36, 39, 41, 44, 48,  50,  51,  53,  54,  56,  63 ), vbias ),
            mod3 = _mm_add_epi8( _mm_set_epi8(  65,  68,  69,  74,  75,  78,  81,  83,  86,  89,  90,  95,  96,  98,  99, 105 ), vbias );

    for ( unsigned long factor = 1, limit = sqrtl( n ); factor <= limit + 30; factor += 30 ) {
        if ( n == 1 ) goto done;

        // up to 2^32, distribution of number candidates produced (0 up to 7) is
        // 0.010841     0.0785208   0.222928    0.31905     0.246109    0.101023    0.0200728   0.00145546 
        unsigned candidates[8], *cand_pen = candidates;
        * cand_pen = 6;
        cand_pen += !( _mm_movemask_epi8( _mm_cmpeq_epi8( mod1,  v3 ) ) | _mm_movemask_epi8( _mm_or_si128( _mm_cmpeq_epi8( mod2,  v3 ), _mm_cmpeq_epi8( mod3,  v3 ) ) ) );
        * cand_pen = 10;                                                                                                                                            
        cand_pen += !( _mm_movemask_epi8( _mm_cmpeq_epi8( mod1,  v5 ) ) | _mm_movemask_epi8( _mm_or_si128( _mm_cmpeq_epi8( mod2,  v5 ), _mm_cmpeq_epi8( mod3,  v5 ) ) ) );
        * cand_pen = 12;                                                                                                                            
        cand_pen += !( _mm_movemask_epi8( _mm_cmpeq_epi8( mod1,  v6 ) ) | _mm_movemask_epi8( _mm_or_si128( _mm_cmpeq_epi8( mod2,  v6 ), _mm_cmpeq_epi8( mod3,  v6 ) ) ) );
        * cand_pen = 16;                                                                                                                            
        cand_pen += !( _mm_movemask_epi8( _mm_cmpeq_epi8( mod1,  v8 ) ) | _mm_movemask_epi8( _mm_or_si128( _mm_cmpeq_epi8( mod2,  v8 ), _mm_cmpeq_epi8( mod3,  v8 ) ) ) );
        * cand_pen = 18;                                                                                                                            
        cand_pen += !( _mm_movemask_epi8( _mm_cmpeq_epi8( mod1,  v9 ) ) | _mm_movemask_epi8( _mm_or_si128( _mm_cmpeq_epi8( mod2,  v9 ), _mm_cmpeq_epi8( mod3,  v9 ) ) ) );
        * cand_pen = 22;                                                                                                                            
        cand_pen += !( _mm_movemask_epi8( _mm_cmpeq_epi8( mod1, v11 ) ) | _mm_movemask_epi8( _mm_or_si128( _mm_cmpeq_epi8( mod2, v11 ), _mm_cmpeq_epi8( mod3, v11 ) ) ) );
        * cand_pen = 28;                                                                                                                            
        cand_pen += !( _mm_movemask_epi8( _mm_cmpeq_epi8( mod1, v14 ) ) | _mm_movemask_epi8( _mm_or_si128( _mm_cmpeq_epi8( mod2, v14 ), _mm_cmpeq_epi8( mod3, v14 ) ) ) );
        * cand_pen = 30;                                                                                                                            
        cand_pen += !( _mm_movemask_epi8( _mm_cmpeq_epi8( mod1, v15 ) ) | _mm_movemask_epi8( _mm_or_si128( _mm_cmpeq_epi8( mod2, v15 ), _mm_cmpeq_epi8( mod3, v15 ) ) ) );

        /*++ total;
        ++ histo[ cand_pen - candidates ];

        cout << "( ";
        while ( cand_pen != candidates ) cout << factor + * -- cand_pen << " ";
        cout << ")" << endl; */

        mod1 = _mm_sub_epi8( mod1, _mm_set1_epi8( 15 ) ); // update residuals
        __m128i mask1 = _mm_cmplt_epi8( mod1, _mm_set1_epi8( 1+bias ) );
        mask1 = _mm_and_si128( mask1, prime1 ); // residual goes to zero or negative?
        mod1 = _mm_add_epi8( mask1, mod1 ); // combine reset into zero or negative

        mod2 = _mm_sub_epi8( mod2, _mm_set1_epi8( 15 ) );
        __m128i mask2 = _mm_cmplt_epi8( mod2, _mm_set1_epi8( 1+bias ) );
        mask2 = _mm_and_si128( mask2, prime2 );
        mod2 = _mm_add_epi8( mask2, mod2 );

        mod3 = _mm_sub_epi8( mod3, _mm_set1_epi8( 15 ) );
        __m128i mask3 = _mm_cmplt_epi8( mod3, _mm_set1_epi8( 1+bias ) );
        mask3 = _mm_and_si128( mask3, prime3 );
        mod3 = _mm_add_epi8( mask3, mod3 );

        if ( cand_pen - candidates == 0 ) continue;
        remove_factor( n, factor + candidates[ 0 ] );
        if ( cand_pen - candidates == 1 ) continue;
        remove_factor( n, factor + candidates[ 1 ] );
        if ( cand_pen - candidates == 2 ) continue;
        remove_factor( n, factor + candidates[ 2 ] );
        if ( cand_pen - candidates == 3 ) continue;
        remove_factor( n, factor + candidates[ 3 ] );
        if ( cand_pen - candidates == 4 ) continue;
        remove_factor( n, factor + candidates[ 4 ] );
        if ( cand_pen - candidates == 5 ) continue;
        remove_factor( n, factor + candidates[ 5 ] );
        if ( cand_pen - candidates == 6 ) continue;
        remove_factor( n, factor + candidates[ 6 ] );
    }

    cout << n;
done:
    /*cout << endl;
    for ( int hx = 0; hx < 8; ++ hx ) cout << (float) histo[hx] / total << " ";*/
    cout << endl;
}
Run Code Online (Sandbox Code Playgroud)

.

dkrauss$ /usr/local/bin/g++ main.cpp -o factorize_sse -O3 --profile-use
dkrauss$ time ./factorize_sse 18446743721522234449
4294967231 4294967279 

real    0m13.437s
user    0m13.393s
sys 0m0.011s
Run Code Online (Sandbox Code Playgroud)

以下是上述的初稿.包括优化

  • 使循环计数器合并无条件(避免分支).
  • 通过将循环展开15倍来获得ILP,将步幅增加到30.
    • 灵感来自您的优化.
    • 30似乎是一个甜蜜点,因为它免费删除2,3和5的倍数.
    • 5到15之间的素数可以在一个步幅中具有几个倍数,因此在载体中的不同相位处放置几个拷贝.
  • 因素remove_factor.
  • 更改remove_factor对非分支数组写入的条件性,不可预测的调用.
  • 使用remove_factorcall 完全展开最终循环,并确保函数始终内联.
    • 消除最终展开的迭代,因为候选者中总是存在7的倍数.
  • 添加另一个包含足够小的剩余素数的向量.
  • 通过向计数器添加偏差来增加空间,并添加另一个向量.现在只有六个素数可以被过滤而不会突然增加到16位,而且我也用完了寄存器:循环需要3个素数向量,3个模数向量,8个要搜索的常数,每个一个常量增加和进行范围检查.那就是16.
    • 在这个应用中,增益是最小的(但是积极的),但是这种技术的最初目的是在另一个答案中过滤筛子的质数.敬请期待...

可读版本:

/*
 *  factorize_sse.cpp
 *  Filter out multiples of the first 17 primes while factorizing a number.
 *
 *  Created by David Krauss on 10/14/10.
 *
 */

#include <cmath>
#include <sstream>
#include <iostream>
#include <xmmintrin.h>
using namespace std;

int main( int argc, char *argv[] ) {
    unsigned long n;

    if ( argc != 2
        || ( istringstream( argv[1] ) >> n >> ws ).rdstate() != ios::eofbit ) {
        cerr << "Usage: " << argv[0] << " <number>\n";
        return 1;
    }

    int primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59 };
    for ( int *p = primes; p < primes + sizeof primes/sizeof *primes; ++ p ) {
        while ( n % * p == 0 ) {
            n /= * p;
            cout << * p << " ";
        }
    }

    if ( n != 1 ) {
        __m128i       mod   = _mm_set_epi8( 1, 2, 3,  5,  6,  8,  9, 11, 14, 15, 18, 20, 21, 23, 26, 29 );
        __m128i const prime = _mm_set_epi8( 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59 ),
                      one = _mm_set1_epi8( 1 );

        for ( unsigned long factor = 1, limit = sqrtl( n ); factor < limit; ) {
            factor += 2;
            __m128i mask = _mm_cmpeq_epi8( mod, one ); // residual going to zero?
            mod = _mm_sub_epi8( mod, one ); // update other residuals
            if ( _mm_movemask_epi8( mask ) ) {
                mask = _mm_and_si128( mask, prime ); // reset cycle if going to zero
                mod = _mm_or_si128( mask, mod ); // combine reset into zeroed position

            } else while ( n % factor == 0 ) {
                n /= factor;
                cout << factor << " ";
                if ( n == 1 ) goto done;
            }
        }
        cout << n;
    }
done:
    cout << endl;
}
Run Code Online (Sandbox Code Playgroud)


xan*_*xan 5

Fermat的分解方法简单快捷,只要在它变得过长而变慢之前就停止它,就可以找到成对的大质因子.然而,在我对随机数的测试中,这种情况太罕见,看不到任何改进.

...不使用概率方法(例如,Miller-Rabin)来确定素数

通过均匀分布,75%的输入将需要十亿次循环迭代,因此,即使您得到一个不确定的答案并且必须恢复到试验部门,也应该首先在不太确定的技术上花费一百万次操作.

我发现Pollard的Rho方法的布伦特变体非常好,但编码和理解更复杂.我见过的最好的例子来自这个论坛的讨论.该方法依赖于运气,但经常有助于获得成功.

Miller-Rabin素性测试实际上是确定性的,大约10 ^ 15,这可以省去无果搜索的麻烦.

我尝试了几十种变体,并根据以下因素来确定int64值:

  1. 审判小因素.(我使用前8000个预先计算的素数.)
  2. 使用Pollard的Rho进行10次尝试,每次尝试使用16次迭代
  3. 试分为sqrt(n).

请注意,Pollard的Rho发现不一定是素数的因子,因此可以使用递归来计算这些因素.