Ana*_*sid 6 python group-by dataframe pandas pandas-groupby
我对R有更多的经验data.table,但我正在努力学习pandas.在data.table,我可以做这样的事情:
> head(dt_m)
event_id device_id longitude latitude time_ category
1: 1004583 -100015673884079572 NA NA 1970-01-01 06:34:52 1 free
2: 1004583 -100015673884079572 NA NA 1970-01-01 06:34:52 1 free
3: 1004583 -100015673884079572 NA NA 1970-01-01 06:34:52 1 free
4: 1004583 -100015673884079572 NA NA 1970-01-01 06:34:52 1 free
5: 1004583 -100015673884079572 NA NA 1970-01-01 06:34:52 1 free
6: 1004583 -100015673884079572 NA NA 1970-01-01 06:34:52 1 free
app_id is_active
1: -5305696816021977482 0
2: -7164737313972860089 0
3: -8504475857937456387 0
4: -8807740666788515175 0
5: 5302560163370202064 0
6: 5521284031585796822 0
dt_m_summary <- dt_m[,
.(
mean_active = mean(is_active, na.rm = TRUE)
, median_lat = median(latitude, na.rm = TRUE)
, median_lon = median(longitude, na.rm = TRUE)
, mean_time = mean(time_)
, new_col = your_function(latitude, longitude, time_)
)
, by = list(device_id, category)
]
Run Code Online (Sandbox Code Playgroud)
新的列(mean_active通过new_col),以及device_id和category,会出现dt_m_summary.by如果我想要一个具有groupby-apply结果的新列,我也可以在原始表中进行类似的转换:
dt_m[, mean_active := mean(is_active, na.rm = TRUE), by = list(device_id, category)]
(如果我想要,例如,选择mean_active大于某个阈值的行,或做其他事情).
我知道有groupby在pandas,但我还没有发现这样做的那种轻松转换为上述的一种方式.我能想到的最好的是做一系列的groupby-apply,然后将结果合并为一个dataframe,但这看起来非常笨重.有没有更好的方法呢?
IIUC,使用groupby和agg.有关更多信息,请参阅文档.
df = pd.DataFrame(np.random.rand(10, 2),
pd.MultiIndex.from_product([list('XY'), range(5)]),
list('AB'))
df
Run Code Online (Sandbox Code Playgroud)
df.groupby(level=0).agg(['sum', 'count', 'std'])
Run Code Online (Sandbox Code Playgroud)
一个更加量身定制的例子是
# level=0 means group by the first level in the index
# if there is a specific column you want to group by
# use groupby('specific column name')
df.groupby(level=0).agg({'A': ['sum', 'std'],
'B': {'my_function': lambda x: x.sum() ** 2}})
Run Code Online (Sandbox Code Playgroud)
注意的dict传递给agg方法有按键'A'和'B'.这意味着,运行['sum', 'std']for'A'和lambda x: x.sum() ** 2for的函数'B'(并标记它'my_function')
注2与你的有关new_column. agg要求传递的函数将列减少为标量.你最好在groupby/之前添加新列agg