我有一个包含2列,ID和收入的数据.我想创建一个列,它将数据分成10组,每组占总收入的10%.分位数方法为我提供了10个具有相同ID数而不是收入的组.
idrev[ , decile := cut(Revenue,
breaks = quantile(Revenue, probs = seq(0, 1, by = 1/10)),
labels = 1:10, right = FALSE)]
Run Code Online (Sandbox Code Playgroud)
我得到以下类型的结果
N Revenue %Revenue
100 $3,992 80%
100 $518 10%
100 $236 5%
100 $126 3%
100 $68 1%
100 $35 1%
100 $16 0%
100 $6 0%
100 $2 0%
100 $1 0%
1,000 $5,000 100%
Run Code Online (Sandbox Code Playgroud)
我正在寻找这个结果
N Revenue %Revenue
798 500 10%
104 500 10%
47 500 10%
25 500 10%
14 500 10%
7 500 10%
3 500 10%
2 500 10%
1 500 10%
1 500 10%
1,000 $5,000 100%
Run Code Online (Sandbox Code Playgroud)
请在R中为此建议解决方案.
添加代码以获取样本数据和统计信息
library(Hmisc);library(data.table)
set.seed(123)
idrev<-data.table(ID=1:1000, Revenue=sample(100,1000,replace=T))
idrev[,.(.N,sum(Revenue))] #Check total revenue
idrev[ , decile := cut2(Revenue,g=10)]
idrev[,.(.N,sum(Revenue)),by=decile][order(decile)]
Run Code Online (Sandbox Code Playgroud)
这是一个data.table唯一可以让你到达那里的方法:
idrev[order(Revenue), revDec := 10 * ceiling(10 * (cumsum(Revenue) / sum(Revenue)))]
Run Code Online (Sandbox Code Playgroud)
这是按收入排序行后十分位数的直接计算.
以下是通过revDec对收入进行求和的结果:
idrev[, .(Revenue=sum(Revenue)), by="revDec"]
revDec Revenue
1: 10 5004
2: 70 5070
3: 20 5039
4: 80 5025
5: 90 4974
6: 30 4974
7: 40 5059
8: 50 5026
9: 100 5091
10: 60 4960
Run Code Online (Sandbox Code Playgroud)
他们都非常接近5000.