dan*_*dar 4 python multi-index dataframe python-3.x pandas
我有一个MultiIndex DataFrame:
predicted_y actual_y predicted_full actual_full
subj_id org_clip
123 3 2 5 [1, 2, 3] [4, 5, 6]
Run Code Online (Sandbox Code Playgroud)
我希望向以下添加新行:
predicted_y actual_y predicted_full actual_full
subj_id org_clip
123 3 2 5 [1, 2, 3] [4, 5, 6]
321 4 20 50 [10, 20, 30] [40, 50, 60] # add this row
Run Code Online (Sandbox Code Playgroud)
而下面的代码可以做到这一点:
df.loc[('321', 4),['predicted_y', 'actual_y']] = [20, 50]
df.loc[('321', 4),['predicted_full', 'actual_full']] = [[10,20,30], [40,50,60]]
Run Code Online (Sandbox Code Playgroud)
但是,当尝试在一行中添加新行时,出现错误:
df.loc[('321', 4),['predicted_y', 'actual_y', 'predicted_full', 'actual_full']] = [20, 50, [10,20,30], [40,50,60]]
>>> ValueError: setting an array element with a sequence.
Run Code Online (Sandbox Code Playgroud)
我认为这与尝试添加包含值和列表的行有关(可能是语法上的)。其他所有尝试都引发了相同的错误;请参阅以下示例:
df.loc[('321', 4),['predicted_y', 'actual_y', ['predicted_full', 'actual_full']]] = [20, 50, [10,20,30], [40,50,60]]
df.loc[('321', 4),['predicted_y', 'actual_y', ['predicted_full'], ['actual_full']]] = [20, 50, [10,20,30], [40,50,60]]
df.loc[('321', 4),['predicted_y', 'actual_y', [['predicted_full'], ['actual_full']]]] = [20, 50, [10,20,30], [40,50,60]]
df.loc[('321', 4),['predicted_y', 'actual_y', 'predicted_full', 'actual_full']] = [20, 50, np.array([10,20,30]), np.array([40,50,60])]
Run Code Online (Sandbox Code Playgroud)
构造初始代码DataFrame:
df = pd.DataFrame(index=pd.MultiIndex(levels=[[], []], labels=[[], []], names=['subj_id', 'org_clip']),
columns=['predicted_y', 'actual_y', 'predicted_full', 'actual_full'])
df.loc[('123', 3),['predicted_y', 'actual_y']] = [2, 5]
df.loc[('123', 3),['predicted_full', 'actual_full']] = [[1,2,3], [4,5,6]]
Run Code Online (Sandbox Code Playgroud)
您可以pd.Series处理dtypes
row_to_append = pd.Series([20, 50, [10, 20, 30], [40, 50, 60]])
cols = ['predicted_y', 'actual_y', 'predicted_full', 'actual_full']
df.loc[(321, 4), cols] = row_to_append.values
df
Run Code Online (Sandbox Code Playgroud)
使至少一个子列表成为 dtype 数组object:
In [27]: df.loc[('321', 4),['predicted_y', 'actual_y', 'predicted_full', 'actual_full']] = (
[20, 50, np.array((10, 20, 30), dtype='O'), [40, 50, 60]])
In [28]: df
Out[28]:
predicted_y actual_y predicted_full actual_full
subj_id org_clip
123 3 2 5 [1, 2, 3] [4, 5, 6]
321 4 20 50 [10, 20, 30] [40, 50, 60]
Run Code Online (Sandbox Code Playgroud)
请注意,错误
ValueError: setting an array element with a sequence.
Run Code Online (Sandbox Code Playgroud)
发生在这一行:
--> 643 arr_value = np.array(value)
Run Code Online (Sandbox Code Playgroud)
并且可以像这样复制
In [12]: np.array([20, 50, [10, 20, 30], [40, 50, 60]])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-12-f6122275ab9f> in <module>()
----> 1 np.array([20, 50, [10, 20, 30], [40, 50, 60]])
ValueError: setting an array element with a sequence.
Run Code Online (Sandbox Code Playgroud)
但是如果其中一个子列表是一个 dtype 对象数组,那么结果就是一个 dtype 对象数组:
In [16]: np.array((20, 50, np.array((10, 20, 30), dtype='O'), (40, 50, 60)))
Out[16]: array([20, 50, array([10, 20, 30], dtype=object), (40, 50, 60)], dtype=object)
Run Code Online (Sandbox Code Playgroud)
因此可以避免 ValueError。
| 归档时间: |
|
| 查看次数: |
3800 次 |
| 最近记录: |