如何在python中查找字典列表中的累计项目总和

NG_*_*_21 3 python dictionary numpy deque pandas

我有一个类似的列表

a=[{'time':3},{'time':4},{'time':5}]
Run Code Online (Sandbox Code Playgroud)

我想像这样以相反的顺序得到值的累积和

b=[{'exp':3,'cumsum':12},{'exp':4,'cumsum':9},{'exp':5,'cumsum':5}]
Run Code Online (Sandbox Code Playgroud)

获得这个的最有效方法是什么?我已经阅读了其他答案,其中使用numpy给出了解决方案

a=[1,2,3]
b=numpy.cumsum(a)
Run Code Online (Sandbox Code Playgroud)

但我也需要在字典中插入cumsum

Cra*_*ler 7

a=[{'time':3},{'time':4},{'time':5}]
b = []
cumsum = 0
for e in a[::-1]:
    cumsum += e['time']
    b.insert(0, {'exp':e['time'], 'cumsum':cumsum})
print(b)
Run Code Online (Sandbox Code Playgroud)

输出:

[{'exp': 3, 'cumsum': 12}, {'exp': 4, 'cumsum': 9}, {'exp': 5, 'cumsum': 5}]
Run Code Online (Sandbox Code Playgroud)


事实证明,在列表的开头插入很(O(n)).相反,尝试一下deque(O(1)):

from collections import deque


a=[{'time':3},{'time':4},{'time':5}]
b = deque()
cumsum = 0
for e in a[::-1]:
    cumsum += e['time']
    b.appendleft({'exp':e['time'], 'cumsum':cumsum})
print(b)
print(list(b))
Run Code Online (Sandbox Code Playgroud)

输出:

deque([{'cumsum': 12, 'exp': 3}, {'cumsum': 9, 'exp': 4}, {'cumsum': 5, 'exp': 5}])
[{'cumsum': 12, 'exp': 3}, {'cumsum': 9, 'exp': 4}, {'cumsum': 5, 'exp': 5}]
Run Code Online (Sandbox Code Playgroud)


这是一个测试每个ITT方法速度的脚本,以及一个包含时序结果的图表:

在此输入图像描述

from collections import deque
from copy import deepcopy
import numpy as np
import pandas as pd
from random import randint
from time import time


def Nehal_pandas(l):
    df = pd.DataFrame(l)
    df['cumsum'] = df.ix[::-1, 'time'].cumsum()[::-1]
    df.columns = ['exp', 'cumsum']
    return df.to_json(orient='records')


def Merlin_pandas(l):
    df           = pd.DataFrame(l).rename(columns={'time':'exp'})
    df["cumsum"] = df['exp'][::-1].cumsum()
    return df.to_dict(orient='records')


def RahulKP_numpy(l):
    cumsum_list = np.cumsum([i['time'] for i in l][::-1])[::-1]
    for i,j in zip(l,cumsum_list):
        i.update({'cumsum':j})


def Divakar_pandas(l):
    df = pd.DataFrame(l)
    df.columns = ['exp']
    df['cumsum'] = (df[::-1].cumsum())[::-1]
    return df.T.to_dict().values()


def cb_insert_0(l):
    b = []
    cumsum = 0
    for e in l[::-1]:
        cumsum += e['time']
        b.insert(0, {'exp':e['time'], 'cumsum':cumsum})
    return b


def cb_deque(l):
    b = deque()
    cumsum = 0
    for e in l[::-1]:
        cumsum += e['time']
        b.appendleft({'exp':e['time'], 'cumsum':cumsum})
    b = list(b)
    return b


def cb_deque_noconvert(l):
    b = deque()
    cumsum = 0
    for e in l[::-1]:
        cumsum += e['time']
        b.appendleft({'exp':e['time'], 'cumsum':cumsum})
    return b


def hpaulj_gen(l, var='value'):
    cum=0
    for i in l:
        j=i[var]
        cum += j
        yield {var:j, 'sum':cum}


def hpaulj_inplace(l, var='time'):
    cum = 0
    for i in l:
        cum += i[var]
        i['sum'] = cum


def test(number_of_lists, min_list_length, max_list_length):
    test_lists = []

    for _ in range(number_of_lists):
        test_list = []
        number_of_dicts = randint(min_list_length,max_list_length)
        for __ in range(number_of_dicts):
            random_value = randint(0,50)
            test_list.append({'time':random_value})
        test_lists.append(test_list)

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = list(hpaulj_gen(l[::-1], 'time'))[::-1]
    elapsed_time = time() - start_time
    print('hpaulj generator:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        hpaulj_inplace(l[::-1])
    elapsed_time = time() - start_time
    print('hpaulj in place:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = cb_insert_0(l)
    elapsed_time = time() - start_time
    print('craig insert list at 0:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = cb_deque(l)
    elapsed_time = time() - start_time
    print('craig deque:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = cb_deque_noconvert(l)
    elapsed_time = time() - start_time
    print('craig deque no convert:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        RahulKP_numpy(l) # l changed in place
    elapsed_time = time() - start_time
    print('Rahul K P numpy:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = Divakar_pandas(l)
    elapsed_time = time() - start_time
    print('Divakar pandas:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = Nehal_pandas(l)
    elapsed_time = time() - start_time
    print('Nehal pandas:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = Merlin_pandas(l)
    elapsed_time = time() - start_time
    print('Merlin pandas:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')
Run Code Online (Sandbox Code Playgroud)

  • 时间在这里的各种方法,让我们知道:) (2认同)