sklearn管道 - 如何在不同的列上应用不同的转换

Jav*_*dra 14 python pipeline scikit-learn

我对sklearn中的管道很新,我遇到了这个问题:我有一个混合了文本和数字的数据集,即某些列只有文本而rest有整数(或浮点数).

我想知道是否有可能构建一个管道,我可以调用LabelEncoder()文本功能和MinMaxScaler()数字列.我在网上看到的例子主要指向使用LabelEncoder()整个数据集而不是选择列.这可能吗?如果是这样,任何指针都将非常感激.

max*_*moo 23

我通常这样做的方法是FeatureUnion使用a FunctionTransformer来拉出相关的列.

重要笔记:

  • 你必须定义你的函数,def因为如果你想挑选你的模型,你不能使用lambdapartial在FunctionTransformer中

  • 您需要初始化FunctionTransformervalidate=False

像这样的东西:

from sklearn.pipeline import make_union, make_pipeline
from sklearn.preprocessing import FunctionTransformer

def get_text_cols(df):
    return df[['name', 'fruit']]

def get_num_cols(df):
    return df[['height','age']]

vec = make_union(*[
    make_pipeline(FunctionTransformer(get_text_cols, validate=False), LabelEncoder()))),
    make_pipeline(FunctionTransformer(get_num_cols, validate=False), MinMaxScaler())))
])
Run Code Online (Sandbox Code Playgroud)


syg*_*syg 10

从v0.20开始,您可以用它ColumnTransformer来完成此任务.

  • 您能举个例子吗? (2认同)

LC1*_*117 10

ColumnTransformer的示例可能会帮助您:

# FOREGOING TRANSFORMATIONS ON 'data' ...
# filter data
data = data[data['county'].isin(COUNTIES_OF_INTEREST)]

# define the feature encoding of the data
impute_and_one_hot_encode = Pipeline([
        ('impute', SimpleImputer(strategy='most_frequent')),
        ('encode', OneHotEncoder(sparse=False, handle_unknown='ignore'))
    ])

featurisation = ColumnTransformer(transformers=[
    ("impute_and_one_hot_encode", impute_and_one_hot_encode, ['smoker', 'county', 'race']),
    ('word2vec', MyW2VTransformer(min_count=2), ['last_name']),
    ('numeric', StandardScaler(), ['num_children', 'income'])
])

# define the training pipeline for the model
neural_net = KerasClassifier(build_fn=create_model, epochs=10, batch_size=1, verbose=0, input_dim=109)
pipeline = Pipeline([
    ('features', featurisation),
    ('learner', neural_net)])

# train-test split
train_data, test_data = train_test_split(data, random_state=0)
# model training
model = pipeline.fit(train_data, train_data['label'])
Run Code Online (Sandbox Code Playgroud)

您可以在以下位置找到完整代码:https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines/healthcare/healthcare.py