izi*_*kgo 6 convolution autoencoder deep-learning keras
我想建立一个卷积自动编码器,其中输入的大小不是恒定的.我这样做是通过堆叠conv-pool层直到我到达编码层,然后使用upsample-conv层进行反向操作.问题是无论我使用什么设置,我都无法在输出层中获得与输入层完全相同的大小.原因是UpSampling层(比如说(2,2)大小),输入的大小加倍,所以我不能得到奇怪的维度.有没有办法将给定图层的输出维度与单个样本的前一层的输入维度联系起来(正如我所说,变量中max-pool图层的输入大小)?
| 归档时间: |
|
| 查看次数: |
1051 次 |
| 最近记录: |