Fre*_* R. 7 r sparse-matrix r-caret
我希望能够用一个稀疏矩阵作为x中caret::train,它看起来像很多人预期的数据帧.我已经能够使用稀疏矩阵与XGboost用caret,但nnet并ELM似乎都需要一个数据帧.我注意到在代码中,插入符号尝试转换x为数据框nnet和ELM模型.
是否有支持稀疏矩阵的模型列表?
您可以使用这段代码来查找哪些模型在 fit 函数中使用了 as.matrix。
请注意,as.matrix 将稀疏矩阵转换为完整的矩阵。您可能会遇到内存问题。我还没有测试各个底层模型是否接受稀疏矩阵。
library(caret) # run on version 6.0-71
model_list <- getModelInfo()
df <- data.frame(models = names(model_list),
fit = rep("", length(model_list)),
stringsAsFactors = FALSE)
for (i in 1:length(model_list)) {
df$fit[i] <- as.expression(functionBody(model_list[[i]]$fit))
}
# find xgboost matrix
df$models[grep("xgb.DMatrix", df$fit)]
[1] "xgbLinear" "xgbTree"
# find all models where fit contains as.matrix(x)
df$models[grep("as.matrix\\(x\\)", df$fit)]
[1] "bdk" "binda" "blasso" "blassoAveraged" "bridge" "brnn"
[7] "dnn" "dwdLinear" "dwdPoly" "dwdRadial" "enet" "enpls.fs"
[13] "enpls" "foba" "gaussprLinear" "gaussprPoly" "gaussprRadial" "glmnet"
[19] "knn" "lars" "lars2" "lasso" "logicBag" "LogitBoost"
[25] "lssvmLinear" "lssvmPoly" "lssvmRadial" "mlpSGD" "nnls" "ordinalNet"
[31] "ORFlog" "ORFpls" "ORFridge" "ORFsvm" "ownn" "PenalizedLDA"
[37] "ppr" "qrnn" "randomGLM" "relaxo" "ridge" "rocc"
[43] "rqlasso" "rqnc" "rvmLinear" "rvmPoly" "rvmRadial" "sda"
[49] "sddaLDA" "sddaQDA" "sdwd" "snn" "spikeslab" "svmLinear"
[55] "svmLinear2" "svmLinear3" "svmLinearWeights" "svmLinearWeights2" "svmPoly" "svmRadial"
[61] "svmRadialCost" "svmRadialSigma" "svmRadialWeights" "xgbLinear" "xgbTree" "xyf"
Run Code Online (Sandbox Code Playgroud)