Spark Metrics:如何访问 executor 和 worker 数据?

Bac*_*con 6 monitoring metrics hadoop-yarn apache-spark

注意:我在 YARN 上使用 Spark

我一直在尝试在 Spark 中实现的度量系统。我启用了 ConsoleSink 和 CsvSink,并为所有四个实例(驱动程序、主机、执行程序、工作程序)启用了 JvmSource。但是,我只有驱动程序输出,控制台和 csv 目标目录中没有工作程序/执行程序/主数据。

阅读完这个问题后,我想知道在提交工作时是否必须向执行者发送一些东西。

我的提交命令: ./bin/spark-submit --class org.apache.spark.examples.SparkPi lib/spark-examples-1.5.0-hadoop2.6.0.jar 10

波纹管是我的metric.properties文件:

# Enable JmxSink for all instances by class name
*.sink.jmx.class=org.apache.spark.metrics.sink.JmxSink

# Enable ConsoleSink for all instances by class name
*.sink.console.class=org.apache.spark.metrics.sink.ConsoleSink

# Polling period for ConsoleSink
*.sink.console.period=10

*.sink.console.unit=seconds

#######################################
# worker instance overlap polling period
worker.sink.console.period=5

worker.sink.console.unit=seconds
#######################################

# Master instance overlap polling period
master.sink.console.period=15

master.sink.console.unit=seconds

# Enable CsvSink for all instances
*.sink.csv.class=org.apache.spark.metrics.sink.CsvSink
#driver.sink.csv.class=org.apache.spark.metrics.sink.CsvSink

# Polling period for CsvSink
*.sink.csv.period=10

*.sink.csv.unit=seconds

# Polling directory for CsvSink
*.sink.csv.directory=/opt/spark-1.5.0-bin-hadoop2.6/csvSink/

# Worker instance overlap polling period
worker.sink.csv.period=10

worker.sink.csv.unit=second

# Enable Slf4jSink for all instances by class name
#*.sink.slf4j.class=org.apache.spark.metrics.sink.Slf4jSink

# Polling period for Slf4JSink
#*.sink.slf4j.period=1

#*.sink.slf4j.unit=minutes


# Enable jvm source for instance master, worker, driver and executor
master.source.jvm.class=org.apache.spark.metrics.source.JvmSource

worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource

driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource

executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource
Run Code Online (Sandbox Code Playgroud)

这是 Spark 创建的 csv 文件的列表。我期待为 Spark 执行程序(也是 JVM)访问相同的数据。

app-20160812135008-0013.driver.BlockManager.disk.diskSpaceUsed_MB.csv
app-20160812135008-0013.driver.BlockManager.memory.maxMem_MB.csv
app-20160812135008-0013.driver.BlockManager.memory.memUsed_MB.csv
app-20160812135008-0013.driver.BlockManager.memory.remainingMem_MB.csv
app-20160812135008-0013.driver.jvm.heap.committed.csv
app-20160812135008-0013.driver.jvm.heap.init.csv
app-20160812135008-0013.driver.jvm.heap.max.csv
app-20160812135008-0013.driver.jvm.heap.usage.csv
app-20160812135008-0013.driver.jvm.heap.used.csv
app-20160812135008-0013.driver.jvm.non-heap.committed.csv
app-20160812135008-0013.driver.jvm.non-heap.init.csv
app-20160812135008-0013.driver.jvm.non-heap.max.csv
app-20160812135008-0013.driver.jvm.non-heap.usage.csv
app-20160812135008-0013.driver.jvm.non-heap.used.csv
app-20160812135008-0013.driver.jvm.pools.Code-Cache.committed.csv
app-20160812135008-0013.driver.jvm.pools.Code-Cache.init.csv
app-20160812135008-0013.driver.jvm.pools.Code-Cache.max.csv
app-20160812135008-0013.driver.jvm.pools.Code-Cache.usage.csv
app-20160812135008-0013.driver.jvm.pools.Code-Cache.used.csv
app-20160812135008-0013.driver.jvm.pools.Compressed-Class-Space.committed.csv
app-20160812135008-0013.driver.jvm.pools.Compressed-Class-Space.init.csv
app-20160812135008-0013.driver.jvm.pools.Compressed-Class-Space.max.csv
app-20160812135008-0013.driver.jvm.pools.Compressed-Class-Space.usage.csv
app-20160812135008-0013.driver.jvm.pools.Compressed-Class-Space.used.csv
app-20160812135008-0013.driver.jvm.pools.Metaspace.committed.csv
app-20160812135008-0013.driver.jvm.pools.Metaspace.init.csv
app-20160812135008-0013.driver.jvm.pools.Metaspace.max.csv
app-20160812135008-0013.driver.jvm.pools.Metaspace.usage.csv
app-20160812135008-0013.driver.jvm.pools.Metaspace.used.csv
app-20160812135008-0013.driver.jvm.pools.PS-Eden-Space.committed.csv
app-20160812135008-0013.driver.jvm.pools.PS-Eden-Space.init.csv
app-20160812135008-0013.driver.jvm.pools.PS-Eden-Space.max.csv
app-20160812135008-0013.driver.jvm.pools.PS-Eden-Space.usage.csv
app-20160812135008-0013.driver.jvm.pools.PS-Eden-Space.used.csv
app-20160812135008-0013.driver.jvm.pools.PS-Old-Gen.committed.csv
app-20160812135008-0013.driver.jvm.pools.PS-Old-Gen.init.csv
app-20160812135008-0013.driver.jvm.pools.PS-Old-Gen.max.csv
app-20160812135008-0013.driver.jvm.pools.PS-Old-Gen.usage.csv
app-20160812135008-0013.driver.jvm.pools.PS-Old-Gen.used.csv
app-20160812135008-0013.driver.jvm.pools.PS-Survivor-Space.committed.csv
app-20160812135008-0013.driver.jvm.pools.PS-Survivor-Space.init.csv
app-20160812135008-0013.driver.jvm.pools.PS-Survivor-Space.max.csv
app-20160812135008-0013.driver.jvm.pools.PS-Survivor-Space.usage.csv
app-20160812135008-0013.driver.jvm.pools.PS-Survivor-Space.used.csv
app-20160812135008-0013.driver.jvm.PS-MarkSweep.count.csv
app-20160812135008-0013.driver.jvm.PS-MarkSweep.time.csv
app-20160812135008-0013.driver.jvm.PS-Scavenge.count.csv
app-20160812135008-0013.driver.jvm.PS-Scavenge.time.csv
app-20160812135008-0013.driver.jvm.total.committed.csv
app-20160812135008-0013.driver.jvm.total.init.csv
app-20160812135008-0013.driver.jvm.total.max.csv
app-20160812135008-0013.driver.jvm.total.used.csv
DAGScheduler.job.activeJobs.csv
DAGScheduler.job.allJobs.csv
DAGScheduler.messageProcessingTime.csv
DAGScheduler.stage.failedStages.csv
DAGScheduler.stage.runningStages.csv
DAGScheduler.stage.waitingStages.csv
Run Code Online (Sandbox Code Playgroud)

Mr *_*ark 4

由于您没有给出您尝试过的命令,我假设您没有传递metrics.properties。要传递metrics.propertis,命令应该是

spark-submit <other parameters> --files metrics.properties 
--conf spark.metrics.conf=metrics.properties
Run Code Online (Sandbox Code Playgroud)

注意metrics.properties必须在--files和--conf中指定,--files会将metrics.properties文件传输到执行器。由于您可以在驱动程序上看到输出,而不是在执行程序上看到输出,我认为您缺少 --files 选项。