Nel*_*ell 13 r data.table
这是一个简短的data.table:
DT <- data.table(Tag1 = c(22,253,6219,6219,252862,252864,312786,312812),
Tag2 = c(22,255,6220,252857,252863,252865,251191,252863),
Date= as.Date(as.character(c("7/25/2008","6/15/2000","6/30/2000","9/6/2002","9/6/2002","9/6/2002","9/3/2003","9/5/2003")),format = "%m/%d/%Y"))
DT
Tag1 Tag2 Date
1: 22 22 2008-07-25
2: 253 255 2000-06-15
3: 6219 6220 2000-06-30
4: 6219 252857 2002-09-06
5: 252862 252863 2002-09-06
6: 252864 252865 2002-09-06
7: 312786 251191 2003-09-03
8: 312812 252863 2003-09-05
Run Code Online (Sandbox Code Playgroud)
我想按3列升序对data.table进行排序:Tag1,Tag2和Date.我测试过:
> test <- DT[order(Tag1, Tag2, Date)]
> test
Tag1 Tag2 Date
1: 22 22 2008-07-25
2: 253 255 2000-06-15
3: 6219 6220 2000-06-30
4: 6219 252857 2002-09-06
5: 252862 252863 2002-09-06
6: 252864 252865 2002-09-06
7: 312786 251191 2003-09-03
8: 312812 252863 2003-09-05
Run Code Online (Sandbox Code Playgroud)
但是,我想对data.table进行排序,如下所示:
> test
Tag1 Tag2 Date
1: 22 22 2008-07-25
2: 253 255 2000-06-15
3: 6219 6220 2000-06-30
4: 6219 252857 2002-09-06
5: 252862 252863 2002-09-06
6: 312812 252863 2003-09-05
7: 252864 252865 2002-09-06
8: 312786 251191 2003-09-03
Run Code Online (Sandbox Code Playgroud)
特别是,Tag1或Tag1的重复值应该一个接一个地放置(例如:Tag1为6219,Tag2为252863).我怎样才能做到这一点 ?
编辑:
建议的解决方案适用于简短的data.table(如上面的data.table).这是一个更长的版本:
DT <- data.table(Tag1 = c(252860, 252862, 312812, 252864, 252866, 252868, 252870, 318880, 252872, 252874, 252876, 252878, 252880, 252880, 252881, 252883,
252885, 252887, 311264, 252889, 252889, 252892, 318879, 318880, 318881), Tag2 = c(252861, 252863, 252863, 252865, 252867, 252869, 252871, 252871, 252873,
252875, 252877, 252879, 414611, 905593, 252882, 252884, 252886, 252888, 252888, 252890, 318904, 252893, 318878, 414547, 318882), Date = c("9/6/2002",
"9/6/2002", "9/5/2003", "9/6/2002", "9/6/2002", "9/6/2002", "9/6/2002", "10/8/2003", "9/6/2002", "9/6/2002", "9/6/2002", "9/6/2002", "10/5/2004",
"9/6/2002", "9/6/2002", "9/6/2002", "9/10/2002", "9/10/2002", "7/15/2003", "9/10/2002", "10/15/2003", "9/10/2002", "10/8/2003", "9/29/2004","10/8/2003"))
Run Code Online (Sandbox Code Playgroud)
这是预期的结果(即data.table"After").特别是,data.table"After"应该遵循两个条件:
1)行按日期按升序排序
2)Tag1或Tag1的重复值一个接一个地放置(最终不需要按升序排列)
Tag1和Tag2的所有重复值均为黄色.
旧秩序
df[order(Tag1, Tag2, Date)]
# Tag1 Tag2 Date
# 1: 22 22 2008-07-25
# 2: 253 255 2000-06-15
# 3: 6219 6220 2000-06-30
# 4: 6219 252857 2002-09-06
# 5: 252862 252863 2002-09-06
# 6: 252864 252865 2002-09-06
# 7: 312786 251191 2003-09-03
# 8: 312812 252863 2003-09-05
Run Code Online (Sandbox Code Playgroud)
新订单
排序Date列按降序排列,然后Tag1按升序排序Tag2.
setcolorder(dt1 <- df[order(-Date)][order(Tag1), .SD, by = Tag2], colnames(df))
dt1
# Tag1 Tag2 Date
# 1: 22 22 2008-07-25
# 2: 253 255 2000-06-15
# 3: 6219 252857 2002-09-06
# 4: 6219 6220 2000-06-30
# 5: 252862 252863 2002-09-06
# 6: 312812 252863 2003-09-05
# 7: 252864 252865 2002-09-06
# 8: 312786 251191 2003-09-03
Run Code Online (Sandbox Code Playgroud)
评论中@akrun的解决方案扰乱了数据的结构.这是比较.看看#4:6219应该有252857而不是251191
df[,lapply(df, sort)]
# Tag1 Tag2 Date
# 1: 22 22 2000-06-15
# 2: 253 255 2000-06-30
# 3: 6219 6220 2002-09-06
# 4: 6219 251191 2002-09-06
# 5: 252862 252857 2002-09-06
# 6: 252864 252863 2003-09-03
# 7: 312786 252863 2003-09-05
# 8: 312812 252865 2008-07-25
Run Code Online (Sandbox Code Playgroud)