sou*_*abh 4 scala apache-spark scala-reflect udf spark-dataframe
我试图从包含scala函数定义的字符串中定义spark(2.0)中的udf.这是片段:
val universe: scala.reflect.runtime.universe.type = scala.reflect.runtime.universe
import universe._
import scala.reflect.runtime.currentMirror
import scala.tools.reflect.ToolBox
val toolbox = currentMirror.mkToolBox()
val f = udf(toolbox.eval(toolbox.parse("(s:String) => 5")).asInstanceOf[String => Int])
sc.parallelize(Seq("1","5")).toDF.select(f(col("value"))).show
Run Code Online (Sandbox Code Playgroud)
这给了我一个错误:
Caused by: java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2133)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1305)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2024)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:373)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Run Code Online (Sandbox Code Playgroud)
但是当我将udf定义为:
val f = udf((s:String) => 5)
Run Code Online (Sandbox Code Playgroud)
它工作得很好.这里有什么问题?最终目标是获取一个具有scala函数defn的字符串并将其用作udf.
正如Giovanny所观察到的那样,问题在于类加载器是不同的(你可以通过调用.getClass.getClassLoader任何对象来更多地研究它).然后,当工作人员尝试反序列化你反射的函数时,所有的地狱都会崩溃.
这是一个不涉及任何类加载器hackery的解决方案.我们的想法是将反思步骤转移给工人.我们最终不得不重做反射步骤,但每个工人只需要重做一次.我认为这是非常优化的 - 即使你只在主节点上进行一次反射,你也必须为每个工作人员做一些工作才能让他们识别这个功能.
val f = udf {
new Function1[String,Int] with Serializable {
import scala.reflect.runtime.universe._
import scala.reflect.runtime.currentMirror
import scala.tools.reflect.ToolBox
lazy val toolbox = currentMirror.mkToolBox()
lazy val func = {
println("reflected function") // triggered at every worker
toolbox.eval(toolbox.parse("(s:String) => 5")).asInstanceOf[String => Int]
}
def apply(s: String): Int = func(s)
}
}
Run Code Online (Sandbox Code Playgroud)
然后,调用sc.parallelize(Seq("1","5")).toDF.select(f(col("value"))).show工作正常.
随意评论println- 它只是计算反射发生次数的简单方法.在spark-shell --master 'local'那只有一次,但在spark-shell --master 'local[2]'它的两次.
该UDF被立即计算,但它从来没有被使用,直到它到达工作节点,所以懒值toolbox和func对工人只得到评估.此外,由于它们很懒惰,因此每个工人只能评估一次.
| 归档时间: |
|
| 查看次数: |
1466 次 |
| 最近记录: |