zem*_*eng 9 python numpy pandas
我有一个2D Numpy数组,我想放入一个pandas系列(不是DataFrame):
>>> import pandas as pd
>>> import numpy as np
>>> a = np.zeros((5, 2))
>>> a
array([[ 0., 0.],
[ 0., 0.],
[ 0., 0.],
[ 0., 0.],
[ 0., 0.]])
Run Code Online (Sandbox Code Playgroud)
但这会引发错误:
>>> s = pd.Series(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/miniconda/envs/pyspark/lib/python3.4/site-packages/pandas/core/series.py", line 227, in __init__
raise_cast_failure=True)
File "/miniconda/envs/pyspark/lib/python3.4/site-packages/pandas/core/series.py", line 2920, in _sanitize_array
raise Exception('Data must be 1-dimensional')
Exception: Data must be 1-dimensional
Run Code Online (Sandbox Code Playgroud)
有可能是黑客:
>>> s = pd.Series(map(lambda x:[x], a)).apply(lambda x:x[0])
>>> s
0 [0.0, 0.0]
1 [0.0, 0.0]
2 [0.0, 0.0]
3 [0.0, 0.0]
4 [0.0, 0.0]
Run Code Online (Sandbox Code Playgroud)
有没有更好的办法?
好吧,你可以使用这个numpy.ndarray.tolist功能,如下:
>>> a = np.zeros((5,2))
>>> a
array([[ 0., 0.],
[ 0., 0.],
[ 0., 0.],
[ 0., 0.],
[ 0., 0.]])
>>> a.tolist()
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]
>>> pd.Series(a.tolist())
0 [0.0, 0.0]
1 [0.0, 0.0]
2 [0.0, 0.0]
3 [0.0, 0.0]
4 [0.0, 0.0]
dtype: object
Run Code Online (Sandbox Code Playgroud)
编辑:
实现类似结果的更快方法就是简单地完成pd.Series(list(a)).这将生成一系列numpy数组而不是Python列表,因此应该比a.tolist返回Python列表列表更快.