Pandas数据帧到Spark数据帧"无法合并类型错误"

Fis*_*ane 13 dataframe pandas apache-spark apache-spark-sql pyspark

我有csv数据并使用read_csv创建Pandas数据帧并将所有列强制为字符串.然后,当我尝试从Pandas数据帧创建Spark数据帧时,我收到以下错误消息.

from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.types import *
z=pd.read_csv("mydata.csv", dtype=str)
z.info()
Run Code Online (Sandbox Code Playgroud)
<class 'pandas.core.frame.DataFrame'>
Int64Index: 74044003 entries, 0 to 74044002
Data columns (total 12 columns):
primaryid       object
event_dt        object
age             object
age_cod         object
age_grp         object
sex             object
occr_country    object
drug_seq        object
drugname        object
route           object
outc_cod        object
pt              object
Run Code Online (Sandbox Code Playgroud)
q= sqlContext.createDataFrame(z)
Run Code Online (Sandbox Code Playgroud)
File "<stdin>", line 1, in <module>
File "/usr/hdp/2.4.2.0-258/spark/python/pyspark/sql/context.py", line 425, in createDataFrame
rdd, schema = self._createFromLocal(data, schema)
 File "/usr/hdp/2.4.2.0-258/spark/python/pyspark/sql/context.py", line 341, in _createFromLocal
struct = self._inferSchemaFromList(data)
 File "/usr/hdp/2.4.2.0-258/spark/python/pyspark/sql/context.py", line 241, in _inferSchemaFromList
schema = reduce(_merge_type, map(_infer_schema, data))
 File "/usr/hdp/2.4.2.0-258/spark/python/pyspark/sql/types.py", line 862, in _merge_type
for f in a.fields]
 File "/usr/hdp/2.4.2.0-258/spark/python/pyspark/sql/types.py", line 856, in _merge_type
raise TypeError("Can not merge type %s and %s" % (type(a), type(b)))
TypeError: Can not merge type <class 'pyspark.sql.types.DoubleType'> and <class 'pyspark.sql.types.StringType'>
Run Code Online (Sandbox Code Playgroud)

这是一个例子.我正在下载公共数据并创建pandas数据帧,但spark不会从pandas数据帧创建spark数据帧.

import pandas as pd
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.types import *

url ="http://www.nber.org/fda/faers/2016/demo2016q1.csv.zip"

import requests, zipfile, StringIO
r = requests.get(url, stream=True)
z = zipfile.ZipFile(StringIO.StringIO(r.content))
z.extractall()


z=pd.read_csv("demo2016q1.csv") # creates pandas dataframe

Data_Frame = sqlContext.createDataFrame(z)
Run Code Online (Sandbox Code Playgroud)

zer*_*323 17

长话短说不依赖于模式推理.一般而言,它既昂贵又棘手.特别是数据中的某些列(例如event_dt_num)缺少值,这会推动Pandas将它们表示为混合类型(不丢失的字符串,缺失值的NaN).

如果您有疑问,最好将所有数据作为字符串读取并在之后进行转换.如果您可以访问代码簿,则应始终提供架构以避免出现问题并降低总体成本.

最后从驱动程序传递数据是反模式.您应该能够使用csv格式(Spark 2.0.0+)或spark-csv库(Spark 1.6及更低版本)直接读取此数据:

df = (spark.read.format("csv").options(header="true")
    .load("/path/tp/demo2016q1.csv"))

## root
##  |-- primaryid: string (nullable = true)
##  |-- caseid: string (nullable = true)
##  |-- caseversion: string (nullable = true)
##  |-- i_f_code: string (nullable = true)
##  |-- i_f_code_num: string (nullable = true)
##   ...
##  |-- to_mfr: string (nullable = true)
##  |-- occp_cod: string (nullable = true)
##  |-- reporter_country: string (nullable = true)
##  |-- occr_country: string (nullable = true)
##  |-- occp_cod_num: string (nullable = true)
Run Code Online (Sandbox Code Playgroud)

在这种特殊情况下,添加inferSchema="true"选项也应该起作用,但最好还是避免它.您还可以提供如下架构:

from pyspark.sql.types import StructType

schema = StructType.fromJson({'fields': [{'metadata': {},
   'name': 'primaryid',
   'nullable': True,
   'type': 'integer'},
  {'metadata': {}, 'name': 'caseid', 'nullable': True, 'type': 'integer'},
  {'metadata': {}, 'name': 'caseversion', 'nullable': True, 'type': 'integer'},
  {'metadata': {}, 'name': 'i_f_code', 'nullable': True, 'type': 'string'},
  {'metadata': {},
   'name': 'i_f_code_num',
   'nullable': True,
   'type': 'integer'},
  {'metadata': {}, 'name': 'event_dt', 'nullable': True, 'type': 'integer'},
  {'metadata': {}, 'name': 'event_dt_num', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'mfr_dt', 'nullable': True, 'type': 'integer'},
  {'metadata': {}, 'name': 'mfr_dt_num', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'init_fda_dt', 'nullable': True, 'type': 'integer'},
  {'metadata': {},
   'name': 'init_fda_dt_num',
   'nullable': True,
   'type': 'string'},
  {'metadata': {}, 'name': 'fda_dt', 'nullable': True, 'type': 'integer'},
  {'metadata': {}, 'name': 'fda_dt_num', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'rept_cod', 'nullable': True, 'type': 'string'},
  {'metadata': {},
   'name': 'rept_cod_num',
   'nullable': True,
   'type': 'integer'},
  {'metadata': {}, 'name': 'auth_num', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'mfr_num', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'mfr_sndr', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'lit_ref', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'age', 'nullable': True, 'type': 'double'},
  {'metadata': {}, 'name': 'age_cod', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'age_grp', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'age_grp_num', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'sex', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'e_sub', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'wt', 'nullable': True, 'type': 'double'},
  {'metadata': {}, 'name': 'wt_cod', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'rept_dt', 'nullable': True, 'type': 'integer'},
  {'metadata': {}, 'name': 'rept_dt_num', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'to_mfr', 'nullable': True, 'type': 'string'},
  {'metadata': {}, 'name': 'occp_cod', 'nullable': True, 'type': 'string'},
  {'metadata': {},
   'name': 'reporter_country',
   'nullable': True,
   'type': 'string'},
  {'metadata': {}, 'name': 'occr_country', 'nullable': True, 'type': 'string'},
  {'metadata': {},
   'name': 'occp_cod_num',
   'nullable': True,
   'type': 'integer'}],
 'type': 'struct'})
Run Code Online (Sandbox Code Playgroud)

直接给读者:

(spark.read.schema(schema).format("csv").options(header="true")
    .load("/path/to/demo2016q1.csv"))
Run Code Online (Sandbox Code Playgroud)