dan*_*dar 9 python multi-index dataframe pandas
我想通过辅助级别的多个值对MultiIndex DataFrame进行切片.例如,在以下DataFrame中:
val1 val2
ind1 ind2 ind3
1 6 s1 10 8
2 7 s1 20 6
3 8 s2 30 4
4 9 s2 50 2
5 10 s3 60 0
Run Code Online (Sandbox Code Playgroud)
我希望只切片中的行ind3 == s1
或 ind3 == s3
:
val1 val2
ind1 ind2
1 6 10 8
2 7 20 6
5 10 60 0
Run Code Online (Sandbox Code Playgroud)
最好的假设选项是传递多个参数.xs
,因为可以明确说明所需的参数level
.
我显然可以连接所有切片的单值DataFrame:
In[2]: pd.concat([df.xs('s1',level=2), df.xs('s3',level=2)])
Out[2]:
val1 val2
ind1 ind2
1 6 10 8
2 7 20 6
5 10 60 0
Run Code Online (Sandbox Code Playgroud)
但是(a)当使用2个以上的值时,它很乏味且不那么可读; (b)对于大型DataFrame而言,它非常重(或者至少比多值切片选项重,如果存在的话).
以下是构建示例DataFrame的代码:
import pandas as pd
df = pd.DataFrame({'ind1':[1,2,3,4,5], 'ind2':[6,7,8,9,10], 'ind3':['s1','s1','s2','s2','s3'], 'val1':[10,20,30,50,60], 'val2':[8,6,4,2,0]}).set_index(['ind1','ind2','ind3'])
Run Code Online (Sandbox Code Playgroud)
Ale*_*lex 11
与DataFrame中的大多数选择一样,您可以使用掩码或索引器(loc
在本例中).
要获取掩码,可以在MultiIndex上使用get_level_values
(docs),然后使用isin
(docs).
m = df.index.get_level_values('ind3').isin(['s1', 's3'])
df[m].reset_index(level=2, drop=True)
Run Code Online (Sandbox Code Playgroud)
使用loc
:
df.loc[(slice(None), slice(None), ['s1', 's3']), :].reset_index(level=2, drop=True)
Run Code Online (Sandbox Code Playgroud)
两个输出
val1 val2
ind1 ind2
1 6 10 8
2 7 20 6
5 10 60 0
Run Code Online (Sandbox Code Playgroud)
注意:这种loc
方式也可以写成Alberto Garcia-Raboso的回答.许多人更喜欢这种语法,因为它更符合loc
语法Index
.这两种语法样式都在文档中讨论.
你可以使用IndexSlice
:
idx = pd.IndexSlice
result = df.loc[idx[:, :, ['s1', 's3']], idx[:]]
result.index = result.index.droplevel('ind3')
print(result)
Run Code Online (Sandbox Code Playgroud)
输出:
val1 val2
ind1 ind2
1 6 10 8
2 7 20 6
5 10 60 0
Run Code Online (Sandbox Code Playgroud)
上面的第二行也可以写成
result = df.loc(axis=0)[idx[:, :, ['s1', 's3']]]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2959 次 |
最近记录: |