Har*_*ara 12 scala apache-spark apache-spark-sql apache-spark-dataset apache-spark-encoders
我正在使用Apache Spark 2.0并创建case class提供架构DetaSet.当我试图根据如何在数据集中存储自定义对象来定义自定义编码器?因为java.time.LocalDate我得到以下例外:
java.lang.UnsupportedOperationException: No Encoder found for java.time.LocalDate
- field (class: "java.time.LocalDate", name: "callDate")
- root class: "FireService"
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$serializerFor(ScalaReflection.scala:598)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$9.apply(ScalaReflection.scala:592)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$9.apply(ScalaReflection.scala:583)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
............
Run Code Online (Sandbox Code Playgroud)
以下是代码:
case class FireService(callNumber: String, callDate: java.time.LocalDate)
implicit val localDateEncoder: org.apache.spark.sql.Encoder[java.time.LocalDate] = org.apache.spark.sql.Encoders.kryo[java.time.LocalDate]
val fireServiceDf = df.map(row => {
val dateFormatter = java.time.format.DateTimeFormatter.ofPattern("MM/dd /yyyy")
FireService(row.getAs[String](0), java.time.LocalDate.parse(row.getAs[String](4), dateFormatter))
})
Run Code Online (Sandbox Code Playgroud)
我们如何定义第三方api的spark编码器?
更新
当我为整个案例类创建编码器时,df.map..将对象映射为二进制,如下所示:
implicit val fireServiceEncoder: org.apache.spark.sql.Encoder[FireService] = org.apache.spark.sql.Encoders.kryo[FireService]
val fireServiceDf = df.map(row => {
val dateFormatter = java.time.format.DateTimeFormatter.ofPattern("MM/dd/yyyy")
FireService(row.getAs[String](0), java.time.LocalDate.parse(row.getAs[String](4), dateFormatter))
})
fireServiceDf: org.apache.spark.sql.Dataset[FireService] = [value: binary]
Run Code Online (Sandbox Code Playgroud)
我期待FireService的地图,但返回地图的二进制.
正如最后一条评论所说,"如果类包含一个字段条,则需要整个对象的编码器." 你需要为FireService自己提供一个隐式编码器; 否则Spark会为你构建一个SQLImplicits.newProductEncoder[T <: Product : TypeTag]: Encoder[T].您可以从类型中看到它不使用implicit字段的任何编码器参数,因此它不能使用存在localDateEncoder.
可以更改Spark以处理此问题,例如使用Shapeless库或直接使用宏; 我不知道这是否是未来的计划.