Python Pandas:获取多行的索引,该列与特定值匹配

WGP*_*WGP 5 python indexing pandas

给定一个DataFrame与列xkyk,我们要查找的索引DataFrame中的值xkyk ==0

我只对其中一栏工作得很好,但是我不能对两栏都工作

b = (df[df['xk'] ==0]).index.tolist()
Run Code Online (Sandbox Code Playgroud)

我会怎么做它xk,并yk在同一时间。

jez*_*ael 5

我想你可以检查是否所有的值True相比子集['xk', 'yk']all

b = df[(df[['xk', 'yk']] == 0).all(1)].index.tolist()
Run Code Online (Sandbox Code Playgroud)

另一种解决方案是添加第二个条件&

b = (df[(df['xk']  == 0) & (df['yk'] == 0)].index.tolist())
Run Code Online (Sandbox Code Playgroud)

样本:

df = pd.DataFrame({'xk':[0,2,3],
                   'yk':[0,5,0],
                   'aa':[0,1,0]})

print (df)
   aa  xk  yk
0   0   0   0
1   1   2   5
2   0   3   0

b = df[(df[['xk', 'yk']] == 0).all(1)].index.tolist()
print (b)
[0]

b1 = (df[(df['xk']  == 0) & (df['yk'] == 0)].index.tolist())
print (b1)
[0]
Run Code Online (Sandbox Code Playgroud)

第二种解决方案更快:

#length of df = 3k
df = pd.concat([df]*1000).reset_index(drop=True)

In [294]: %timeit df[(df[['xk', 'yk']] == 0).all(1)].index.tolist()
1000 loops, best of 3: 1.21 ms per loop

In [295]: %timeit (df[(df['xk']  == 0) & (df['yk'] == 0)].index.tolist())
1000 loops, best of 3: 828 µs per loop
Run Code Online (Sandbox Code Playgroud)