绘制3D中的正态分布

Joh*_*cht 3 python matplotlib mplot3d

我试图绘制两个正态分布变量的comun分布.

下面的代码绘制了一个正态的分布式变量.用于绘制两个正态分布式变量的代码是什么?

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import math

mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(-3, 3, 100)
plt.plot(x,mlab.normpdf(x, mu, sigma))

plt.show()
Run Code Online (Sandbox Code Playgroud)

Ian*_*nhi 14

听起来你正在寻找的是多变量正态分布.这在scipy中实现为scipy.stats.multivariate_normal.重要的是要记住,您正在将协方差矩阵传递给函数.因此,为了保持简单,请将对角线元素保持为零:

[X variance ,     0    ]
[     0     ,Y Variance]
Run Code Online (Sandbox Code Playgroud)

下面是使用此函数并生成结果分布的3D图的示例.我添加了色彩图,以便更容易看到曲线,但可以随意删除它.

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
from mpl_toolkits.mplot3d import Axes3D

#Parameters to set
mu_x = 0
variance_x = 3

mu_y = 0
variance_y = 15

#Create grid and multivariate normal
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X, Y = np.meshgrid(x,y)
pos = np.empty(X.shape + (2,))
pos[:, :, 0] = X; pos[:, :, 1] = Y
rv = multivariate_normal([mu_x, mu_y], [[variance_x, 0], [0, variance_y]])

#Make a 3D plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, rv.pdf(pos),cmap='viridis',linewidth=0)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()
Run Code Online (Sandbox Code Playgroud)

给你这个情节: 在此输入图像描述

编辑

通过matplotlib.mlab.bivariate_normal可以获得更简单的验证 它采用以下参数,因此您不必担心矩阵 matplotlib.mlab.bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0) 在这里X和Y再次是meshgrid的结果,因此使用它来重新创建上面的图:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.mlab import bivariate_normal
from mpl_toolkits.mplot3d import Axes3D

#Parameters to set
mu_x = 0
sigma_x = np.sqrt(3)

mu_y = 0
sigma_y = np.sqrt(15)

#Create grid and multivariate normal
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X, Y = np.meshgrid(x,y)
Z = bivariate_normal(X,Y,sigma_x,sigma_y,mu_x,mu_y)

#Make a 3D plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z,cmap='viridis',linewidth=0)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()
Run Code Online (Sandbox Code Playgroud)

赠送: 在此输入图像描述


2Ob*_*Obe 6

以下对上面@Ianhi 代码的改编返回了上面 3D 绘图的等高线图版本。

import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
import numpy as np
from scipy.stats import multivariate_normal




#Parameters to set
mu_x = 0
variance_x = 3

mu_y = 0
variance_y = 15

x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X,Y = np.meshgrid(x,y)

pos = np.array([X.flatten(),Y.flatten()]).T



rv = multivariate_normal([mu_x, mu_y], [[variance_x, 0], [0, variance_y]])


fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)
ax0.contour(X, Y, rv.pdf(pos).reshape(500,500))

plt.show()
Run Code Online (Sandbox Code Playgroud)