Tensorflow Relu误解

Jam*_*mes 12 deep-learning tensorflow

我最近一直在做一个基于的Udacity深度学习课程TensorFlow.我有一个简单的MNIST程序,准确率约为92%:


from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x, W) + b)

y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) 

我的下一个任务是 Turn the logistic regression example with SGD into a 1-hidden layer neural network with rectified linear units nn.relu() and 1024 hidden nodes

我对此有一个心理障碍.目前我有一个784 x 10的权重矩阵和一个10元素的长偏置矢量.我不明白如何将生成的10个元素向量连接WX + Bias到1024 Relu秒.

如果有人能向我解释这一点,我将非常感激.

Yar*_*tov 18

现在你有类似的东西

你需要这样的东西

(此图表缺少ReLU层,后面是+ b1)