Ant*_*min 9 python algorithm opencv
我正在使用opencv_traincascade进行对象检测.我试着在照片上找到眼镜.为此,我已经下载了830张图片:http: //pi1.lmcdn.ru/product/V/I/VI060DWIHZ27_1_v2.jpg
然后,我已经下载了许多模特穿着连衣裙或只是连衣裙照片,1799张照片.
然后我用参数启动opencv_traincascade:opencv_traincascade -data Feature/classifier -vec samples.vec -bg negatives.txt -numStages 10 -minHitRate 0.999 -maxFalseAlarmRate 0.5 -numPos 830 -numNeg 1799 -w 60 -h 90 -mode ALL - precalcValBufSize 1024 -precalcIdxBufSize 1024
但是在第4步之后,我有一条消息:临时阶段的训练数据集无法填充.分支培训终止.
完整的堆栈跟踪是:
?  pictureFeature opencv_traincascade -data Feature/classifier -vec samples.vec -bg negatives.txt -numStages 10 -minHitRate 0.999 -maxFalseAlarmRate 0.5 -numPos 830 -numNeg 1799 -w 60 -h 90 -mode ALL -precalcValBufSize 1024 -precalcIdxBufSize 1024
PARAMETERS:
cascadeDirName: Feature/classifier
vecFileName: samples.vec
bgFileName: negatives.txt
numPos: 830
numNeg: 1799
numStages: 10
precalcValBufSize[Mb] : 1024
precalcIdxBufSize[Mb] : 1024
acceptanceRatioBreakValue : -1
stageType: BOOST
featureType: HAAR
sampleWidth: 60
sampleHeight: 90
boostType: GAB
minHitRate: 0.999
maxFalseAlarmRate: 0.5
weightTrimRate: 0.95
maxDepth: 1
maxWeakCount: 100
mode: ALL
===== TRAINING 0-stage =====
<BEGIN
POS count : consumed   830 : 830
NEG count : acceptanceRatio    1799 : 1
Precalculation time: 26
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|        1|
+----+---------+---------+
|   3|        1| 0.145636|
+----+---------+---------+
END>
Training until now has taken 0 days 5 hours 22 minutes 10 seconds.
===== TRAINING 1-stage =====
<BEGIN
POS count : consumed   830 : 830
NEG count : acceptanceRatio    1799 : 0.145715
Precalculation time: 24
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|        1|
+----+---------+---------+
|   3|        1|        1|
+----+---------+---------+
|   4|        1| 0.762646|
+----+---------+---------+
|   5|        1| 0.432462|
+----+---------+---------+
END>
Training until now has taken 0 days 14 hours 38 minutes 28 seconds.
===== TRAINING 2-stage =====
<BEGIN
POS count : consumed   830 : 830
NEG count : acceptanceRatio    1799 : 0.062696
Precalculation time: 28
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|        1|
+----+---------+---------+
|   3|        1|        1|
+----+---------+---------+
|   4|        1| 0.590328|
+----+---------+---------+
|   5|        1| 0.187326|
+----+---------+---------+
END>
Training until now has taken 0 days 23 hours 21 minutes 4 seconds.
===== TRAINING 3-stage =====
<BEGIN
POS count : consumed   830 : 830
NEG count : acceptanceRatio    1799 : 0.0117929
Precalculation time: 21
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        1|
+----+---------+---------+
|   2|        1|        1|
+----+---------+---------+
|   3|        1|0.0944969|
+----+---------+---------+
END>
Training until now has taken 1 days 3 hours 47 minutes 34 seconds.
===== TRAINING 4-stage =====
<BEGIN
POS count : consumed   830 : 830
NEG count : acceptanceRatio    1799 : 0.00112161
Precalculation time: 18
+----+---------+---------+
|  N |    HR   |    FA   |
+----+---------+---------+
|   1|        1|        0|
+----+---------+---------+
END>
Training until now has taken 1 days 5 hours 4 minutes 35 seconds.
===== TRAINING 5-stage =====
<BEGIN
POS count : consumed   830 : 830
Train dataset for temp stage can not be filled. Branch training terminated.
我尝试使用cascade.xml进行对象搜索,但结果完全失败了.
有人能解决我的问题吗?
如果您查看错误,您会发现它停在“NEG count”处,这意味着在第 5 阶段读取负训练数据集图像时出现问题。因此,您需要修复负训练样本的路径才能使其发挥作用。
以下是关于此问题的详细讨论,可能会有所帮助:Cascade Training Error OpenCV 2.4.4
这也可能是 bg.txt 文件的问题,这是另一个答案:error in train casacde。
另一篇文章有类似的错误:无法填充临时阶段的训练数据集。
如果没有任何效果,请尝试使用不同版本的 open cv:http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.9/opencv-2.4.9.zip/download
| 归档时间: | 
 | 
| 查看次数: | 390 次 | 
| 最近记录: |