Bha*_*rat 7 multi-gpu deep-learning torch
这个问题是关于使任何nnGraph网络在多个GPU上运行而不是特定于以下网络实例
我正在尝试训练一个用nnGraph构建的网络.后面的图表是附上的.我试图在多GPU设置中运行parallelModel(请参阅代码或图9).如果我将并行模型附加到nn.Sequential容器然后创建DataParallelTable,它将在多GPU设置中工作(没有nnGraph).但是,在将它附加到nnGraph后,我收到一个错误.如果我在单个GPU上训练(在if语句中将true设置为false),则向后传递有效,但在多GPU设置中,我得到一个错误"gmodule.lua:418:尝试索引本地'gradInput'(一个零值)".我认为后向传递中的节点9应该在多GPU上运行,但是这种情况并没有发生.在nnGraph上创建DataParallelTable并不适合我,但我认为至少将内部顺序网络放在DataParallelTable中会起作用.有没有其他方法来分割传递给nnGraph的初始数据,以便它在多GPU上运行?
require 'torch'
require 'nn'
require 'cudnn'
require 'cunn'
require 'cutorch'
require 'nngraph'
data1 = torch.ones(4,20):cuda()
data2 = torch.ones(4,10):cuda()
tmodel = nn.Sequential()
tmodel:add(nn.Linear(20,10))
tmodel:add(nn.Linear(10,10))
parallelModel = nn.ParallelTable()
parallelModel:add(tmodel)
parallelModel:add(nn.Identity())
parallelModel:add(nn.Identity())
model = parallelModel
if true then
local function sharingKey(m)
local key = torch.type(m)
if m.__shareGradInputKey then
key = key .. ':' .. m.__shareGradInputKey
end
return key
end
-- Share gradInput for memory efficient backprop
local cache = {}
model:apply(function(m)
local moduleType = torch.type(m)
if torch.isTensor(m.gradInput) and moduleType ~= 'nn.ConcatTable' then
local key = sharingKey(m)
if cache[key] == nil then
cache[key] = torch.CudaStorage(1)
end
m.gradInput = torch.CudaTensor(cache[key], 1, 0)
end
end)
end
if true then
cudnn.fastest = true
cudnn.benchmark = true
-- Wrap the model with DataParallelTable, if using more than one GPU
local gpus = torch.range(1, 2):totable()
local fastest, benchmark = cudnn.fastest, cudnn.benchmark
local dpt = nn.DataParallelTable(1, true, true)
:add(model, gpus)
:threads(function()
local cudnn = require 'cudnn'
cudnn.fastest, cudnn.benchmark = fastest, benchmark
end)
dpt.gradInput = nil
model = dpt:cuda()
end
newmodel = nn.Sequential()
newmodel:add(model)
input1 = nn.Identity()()
input2 = nn.Identity()()
input3 = nn.Identity()()
out = newmodel({input1,input2,input3})
r1 = nn.NarrowTable(1,2)(out)
r2 = nn.NarrowTable(2,2)(out)
f1 = nn.JoinTable(2)(r1)
f2 = nn.JoinTable(2)(r2)
n1 = nn.Sequential()
n1:add(nn.Linear(20,5))
n2 = nn.Sequential()
n2:add(nn.Linear(20,5))
f11 = n1(f1)
f12 = n2(f2)
foutput = nn.JoinTable(2)({f11,f12})
g = nn.gModule({input1,input2,input3},{foutput})
g = g:cuda()
g:forward({data1, data2, data2})
g:backward({data1, data2, data2}, torch.rand(4,10):cuda())
Run Code Online (Sandbox Code Playgroud)
"if"语句中的代码取自Facebook的ResNet实现