如何在张量流中置换转换?

alv*_*vas 16 python transpose numpy permutation tensorflow

来自文档:

转置a.根据烫发更换尺寸.

返回的张量的维度i将对应于输入维度perm[i].如果perm没有给出,则设置为(n-1 ... 0),其中n是输入张量的等级.因此,默认情况下,此操作在2-D输入张量上执行常规矩阵转置.

但是我仍然有点不清楚我应该如何切割输入张量.例如,来自文档:

tf.transpose(x, perm=[0, 2, 1]) ==> [[[1  4]
                                      [2  5]
                                      [3  6]]

                                     [[7 10]
                                      [8 11]
                                      [9 12]]]
Run Code Online (Sandbox Code Playgroud)

为什么perm=[0,2,1]产生1x3x2张量?

经过一些试验和错误:

twothreefour = np.array([ [[1,2,3,4], [5,6,7,8], [9,10,11,12]] , 
                        [[13,14,15,16], [17,18,19,20], [21,22,23,24]] ])
twothreefour
Run Code Online (Sandbox Code Playgroud)

[OUT]:

array([[[ 1,  2,  3,  4],
        [ 5,  6,  7,  8],
        [ 9, 10, 11, 12]],

       [[13, 14, 15, 16],
        [17, 18, 19, 20],
        [21, 22, 23, 24]]])
Run Code Online (Sandbox Code Playgroud)

如果我转置它:

fourthreetwo = tf.transpose(twothreefour) 
with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    print (fourthreetwo.eval())
Run Code Online (Sandbox Code Playgroud)

我得到4x3x2到2x3x4,这听起来合乎逻辑.

[OUT]:

[[[ 1 13]
  [ 5 17]
  [ 9 21]]

 [[ 2 14]
  [ 6 18]
  [10 22]]

 [[ 3 15]
  [ 7 19]
  [11 23]]

 [[ 4 16]
  [ 8 20]
  [12 24]]]
Run Code Online (Sandbox Code Playgroud)

但是当我使用perm参数输出时,我不确定我真正得到的是:

twofourthree = tf.transpose(twothreefour, perm=[0,2,1]) 
with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    print (threetwofour.eval())
Run Code Online (Sandbox Code Playgroud)

[OUT]:

[[[ 1  5  9]
  [ 2  6 10]
  [ 3  7 11]
  [ 4  8 12]]

 [[13 17 21]
  [14 18 22]
  [15 19 23]
  [16 20 24]]]
Run Code Online (Sandbox Code Playgroud)

为什么perm=[0,2,1]从2x3x4返回2x4x3矩阵?

再次尝试perm=[1,0,2]:

threetwofour = tf.transpose(twothreefour, perm=[1,0,2]) 
with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    print (threetwofour.eval())
Run Code Online (Sandbox Code Playgroud)

[OUT]:

[[[ 1  2  3  4]
  [13 14 15 16]]

 [[ 5  6  7  8]
  [17 18 19 20]]

 [[ 9 10 11 12]
  [21 22 23 24]]]
Run Code Online (Sandbox Code Playgroud)

为什么perm=[1,0,2]从2x3x4返回3x2x4?

这是否意味着perm参数是np.shape基于我的数组形状的基于元素的我和转置张量?

即:

_size = (2, 4, 3, 5)
randarray = np.random.randint(5, size=_size)

shape_idx = {i:_s for i, _s in enumerate(_size)}

randarray_t_func = tf.transpose(randarray, perm=[3,0,2,1]) 
with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    tranposed_array = randarray_t_func.eval()
    print (tranposed_array.shape)

print (tuple(shape_idx[_s] for _s in [3,0,2,1]))
Run Code Online (Sandbox Code Playgroud)

[OUT]:

(5, 2, 3, 4)
(5, 2, 3, 4)
Run Code Online (Sandbox Code Playgroud)

max*_*moo 30

我认为perm是在维度上.例如perm=[0,2,1],简称dim_0 -> dim_0, dim_1 -> dim_2, dim_2 -> dim_1.因此对于2D张量,perm=[1,0]只是矩阵转置.这回答了你的问题了吗?


小智 5

A=[2,3,4] matrix, using perm(1,0,2) will get B=[3,2,4].
Run Code Online (Sandbox Code Playgroud)

解释:

Index=(0,1,2)
A    =[2,3,4]
Perm =(1,0,2)
B    =(3,2,4)  --> Perm 1 from Index 1 (3), Perm 0 from Index 0 (2), Perm 2 from Index 2 (4) --> so get (3,2,4)
Run Code Online (Sandbox Code Playgroud)

  • 请添加一些解释。 (7认同)