我有一个pandas数据帧,我正在从defaultdict
Python中读取,但有些列有不同的长度.以下是数据的外观:
Date col1 col2 col3 col4 col5
01-01-15 5 12 1 -15 10
01-02-15 7 0 9 11 7
01-03-15 6 1 2 18
01-04-15 9 8 10
01-05-15 -4 7
01-06-15 -11 -1
01-07-15 6
Run Code Online (Sandbox Code Playgroud)
而且我可以NaN
像这样用空格填充空白:
pd.DataFrame.from_dict(pred_dict, orient='index').T
Run Code Online (Sandbox Code Playgroud)
这使:
Date col1 col2 col3 col4 col5
01-01-15 5 12 1 -15 10
01-02-15 7 0 9 11 7
01-03-15 NaN 6 1 2 18
01-04-15 NaN 9 8 10 NaN
01-05-15 NaN -4 NaN 7 NaN
01-06-15 NaN -11 NaN -1 NaN
01-07-15 NaN 6 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
但是,我真正想要的是一种前置NaN
s而不是将它们附加到最后的方法,这样数据看起来像这样:
Date col1 col2 col3 col4 col5
01-01-15 NaN 12 NaN NaN NaN
01-02-15 NaN 0 NaN -15 NaN
01-03-15 NaN 6 NaN 11 NaN
01-04-15 NaN 9 1 2 NaN
01-05-15 NaN -4 9 10 10
01-06-15 5 -11 1 7 7
01-07-15 7 6 8 -1 18
Run Code Online (Sandbox Code Playgroud)
是否有捷径可寻?
您可以使用以下代码重新创建字典:
import pandas as pd
from collections import defaultdict
d = defaultdict(list)
d["Date"].extend([
"01-01-15",
"01-02-15",
"01-03-15",
"01-04-15",
"01-05-15",
"01-06-15",
"01-07-15"
])
d["col1"].extend([5, 7])
d["col2"].extend([12, 0, 6, 9, -4, -11, 6])
d["col3"].extend([1, 9, 1, 8])
d["col4"].extend([-15, 11, 2, 10, 7, -1])
d["col5"].extend([10, 7, 18])
Run Code Online (Sandbox Code Playgroud)
您可以使用Series.shift
来诱导 Series/DataFrame。不幸的是,您无法传入句点数组 - 您必须将每列移动一个整数值。
s = df.isnull().sum()
for col, periods in s.iteritems():
df[col] = df[col].shift(periods)
Run Code Online (Sandbox Code Playgroud)
对您之前的问题的itertools 解决方案进行一些修改:
pd.DataFrame(list(itertools.zip_longest(*[reversed(i) for i in d.values()]))[::-1], columns=d.keys()).sort_index(axis=1)
Out[143]:
Date col1 col2 col3 col4 col5
0 01-01-15 NaN 12 NaN NaN NaN
1 01-02-15 NaN 0 NaN -15.0 NaN
2 01-03-15 NaN 6 NaN 11.0 NaN
3 01-04-15 NaN 9 1.0 2.0 NaN
4 01-05-15 NaN -4 9.0 10.0 10.0
5 01-06-15 5.0 -11 1.0 7.0 7.0
6 01-07-15 7.0 6 8.0 -1.0 18.0
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
200 次 |
最近记录: |