在PySpark中使用Apache Spark数据帧删除重音的最佳方法是什么?

Hug*_*yes 14 python unicode-normalization apache-spark apache-spark-sql pyspark

我需要删除西班牙语中的重音和来自不同数据集的其他语言的重音.

我已经在这篇文章提供的代码中做了一个函数,删除了特殊的重音符号.问题是函数很慢,因为它使用了UDF.我只是想知道我是否可以提高函数的性能以在更短的时间内获得结果,因为这对小型数据帧有好处,但对大型数据帧则不行.

提前致谢.

在这里代码,您将能够按照它呈现的方式运行它:

# Importing sql types
from pyspark.sql.types import StringType, IntegerType, StructType, StructField
from pyspark.sql.functions import udf, col
import unicodedata

# Building a simple dataframe:
schema = StructType([StructField("city", StringType(), True),
                     StructField("country", StringType(), True),
                     StructField("population", IntegerType(), True)])

countries = ['Venezuela', 'US@A', 'Brazil', 'Spain']
cities = ['Maracaibó', 'New York', '   São Paulo   ', '~Madrid']
population = [37800000,19795791,12341418,6489162]

# Dataframe:
df = sqlContext.createDataFrame(list(zip(cities, countries, population)), schema=schema)

df.show()

class Test():
    def __init__(self, df):
        self.df = df

    def clearAccents(self, columns):
        """This function deletes accents in strings column dataFrames, 
        it does not eliminate main characters, but only deletes special tildes.

        :param columns  String or a list of column names.
        """
        # Filters all string columns in dataFrame
        validCols = [c for (c, t) in filter(lambda t: t[1] == 'string', self.df.dtypes)]

        # If None or [] is provided with column parameter:
        if (columns == "*"): columns = validCols[:]

        # Receives  a string as an argument
        def remove_accents(inputStr):
            # first, normalize strings:
            nfkdStr = unicodedata.normalize('NFKD', inputStr)
            # Keep chars that has no other char combined (i.e. accents chars)
            withOutAccents = u"".join([c for c in nfkdStr if not unicodedata.combining(c)])
            return withOutAccents

        function = udf(lambda x: remove_accents(x) if x != None else x, StringType())
        exprs = [function(col(c)).alias(c) if (c in columns) and (c in validCols) else c for c in self.df.columns]
        self.df = self.df.select(*exprs)

foo = Test(df)
foo.clearAccents(columns="*")
foo.df.show()
Run Code Online (Sandbox Code Playgroud)

eli*_*sah 7

使用 python Unicode Database 的另一种方法:

import unicodedata
import sys

from pyspark.sql.functions import translate, regexp_replace

def make_trans():
    matching_string = ""
    replace_string = ""

    for i in range(ord(" "), sys.maxunicode):
        name = unicodedata.name(chr(i), "")
        if "WITH" in name:
            try:
                base = unicodedata.lookup(name.split(" WITH")[0])
                matching_string += chr(i)
                replace_string += base
            except KeyError:
                pass

    return matching_string, replace_string

def clean_text(c):
    matching_string, replace_string = make_trans()
    return translate(
        regexp_replace(c, "\p{M}", ""), 
        matching_string, replace_string
    ).alias(c)
Run Code Online (Sandbox Code Playgroud)

所以现在让我们测试一下:

df = sc.parallelize([
(1, "Maracaibó"), (2, "New York"),
(3, "   São Paulo   "), (4, "~Madrid"),
(5, "Sa?o Paulo"), (6, "Maracaibo?")
]).toDF(["id", "text"])

df.select(clean_text("text")).show()
## +---------------+
## |           text|
## +---------------+
## |      Maracaibo|
## |       New York|
## |   Sao Paulo   |
## |        ~Madrid|
## |      Sao Paulo|
## |      Maracaibo|
## +---------------+
Run Code Online (Sandbox Code Playgroud)

确认@zero323


zer*_*323 5

一种可能的改进是构建一个custom Transformer,它将处理Unicode规范化以及相应的Python包装器。它应该减少在JVM和Python之间传递数据的总体开销,并且不需要在Spark本身中进行任何修改或访问私有API。

在JVM方面,您将需要一个类似于此的转换器:

package net.zero323.spark.ml.feature

import java.text.Normalizer
import org.apache.spark.ml.UnaryTransformer
import org.apache.spark.ml.param._
import org.apache.spark.ml.util._
import org.apache.spark.sql.types.{DataType, StringType}

class UnicodeNormalizer (override val uid: String)
  extends UnaryTransformer[String, String, UnicodeNormalizer] {

  def this() = this(Identifiable.randomUID("unicode_normalizer"))

  private val forms = Map(
    "NFC" -> Normalizer.Form.NFC, "NFD" -> Normalizer.Form.NFD,
    "NFKC" -> Normalizer.Form.NFKC, "NFKD" -> Normalizer.Form.NFKD
  )

  val form: Param[String] = new Param(this, "form", "unicode form (one of NFC, NFD, NFKC, NFKD)",
    ParamValidators.inArray(forms.keys.toArray))

  def setN(value: String): this.type = set(form, value)

  def getForm: String = $(form)

  setDefault(form -> "NFKD")

  override protected def createTransformFunc: String => String = {
    val normalizerForm = forms($(form))
    (s: String) => Normalizer.normalize(s, normalizerForm)
  }

  override protected def validateInputType(inputType: DataType): Unit = {
    require(inputType == StringType, s"Input type must be string type but got $inputType.")
  }

  override protected def outputDataType: DataType = StringType
}
Run Code Online (Sandbox Code Playgroud)

相应的构建定义(调整Spark和Scala版本以匹配您的Spark部署):

name := "unicode-normalization"

version := "1.0"

crossScalaVersions := Seq("2.11.12", "2.12.8")

organization := "net.zero323"

val sparkVersion = "2.4.0"

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % sparkVersion,
  "org.apache.spark" %% "spark-sql" % sparkVersion,
  "org.apache.spark" %% "spark-mllib" % sparkVersion
)
Run Code Online (Sandbox Code Playgroud)

在Python方面,您需要一个与此类似的包装器。

from pyspark.ml.param.shared import *
# from pyspark.ml.util import keyword_only  # in Spark < 2.0
from pyspark import keyword_only 
from pyspark.ml.wrapper import JavaTransformer

class UnicodeNormalizer(JavaTransformer, HasInputCol, HasOutputCol):

    @keyword_only
    def __init__(self, form="NFKD", inputCol=None, outputCol=None):
        super(UnicodeNormalizer, self).__init__()
        self._java_obj = self._new_java_obj(
            "net.zero323.spark.ml.feature.UnicodeNormalizer", self.uid)
        self.form = Param(self, "form",
            "unicode form (one of NFC, NFD, NFKC, NFKD)")
        # kwargs = self.__init__._input_kwargs  # in Spark < 2.0
        kwargs = self._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, form="NFKD", inputCol=None, outputCol=None):
        # kwargs = self.setParams._input_kwargs  # in Spark < 2.0
        kwargs = self._input_kwargs
        return self._set(**kwargs)

    def setForm(self, value):
        return self._set(form=value)

    def getForm(self):
        return self.getOrDefault(self.form)
Run Code Online (Sandbox Code Playgroud)

构建Scala软件包:

sbt +package
Run Code Online (Sandbox Code Playgroud)

启动shell或提交时将其包括在内。例如,使用Scala 2.11构建Spark:

bin/pyspark --jars path-to/target/scala-2.11/unicode-normalization_2.11-1.0.jar \
 --driver-class-path path-to/target/scala-2.11/unicode-normalization_2.11-1.0.jar
Run Code Online (Sandbox Code Playgroud)

并且您应该准备出发。剩下的只是一点正则表达式魔术:

from pyspark.sql.functions import regexp_replace

normalizer = UnicodeNormalizer(form="NFKD",
    inputCol="text", outputCol="text_normalized")

df = sc.parallelize([
    (1, "Maracaibó"), (2, "New York"),
    (3, "   São Paulo   "), (4, "~Madrid")
]).toDF(["id", "text"])

(normalizer
    .transform(df)
    .select(regexp_replace("text_normalized", "\p{M}", ""))
    .show())

## +--------------------------------------+
## |regexp_replace(text_normalized,\p{M},)|
## +--------------------------------------+
## |                             Maracaibo|
## |                              New York|
## |                          Sao Paulo   |
## |                               ~Madrid|
## +--------------------------------------+
Run Code Online (Sandbox Code Playgroud)

请注意,这遵循与内置文本转换器相同的约定,并且不是null安全的。您可以为容易正确用支票nullcreateTransformFunc