the*_*uls 4 java algorithm performance complexity-theory time-complexity
我需要找到两个整数之间的整数重的数量A和B,其中A <= B在任何时候.
只要数字的平均值大于,整数就被认为是重的
7.例如:
9878被认为是沉重的,因为(9 + 8 + 7 + 8)/4 = 8,虽然1111不是,因为(1 + 1 + 1 + 1)/4 = 1.
我有下面的解决方案,但它绝对可怕,并且在运行大量输入时会超时.我该怎么做才能提高效率?
int countHeavy(int A, int B) {
int countHeavy = 0;
while(A <= B){
if(averageOfDigits(A) > 7){
countHeavy++;
}
A++;
}
return countHeavy;
}
float averageOfDigits(int a) {
float result = 0;
int count = 0;
while (a > 0) {
result += (a % 10);
count++;
a = a / 10;
}
return result / count;
}
Run Code Online (Sandbox Code Playgroud)
使用查找表计算数字
您可以生成一个表,该表存储有d个数字的整数,其数字总和大于数字x.然后,您可以快速查找10,100,1000 ...整数范围内有多少重数.这些表只保存9×d值,因此它们占用的空间非常小,可以快速生成.
然后,要检查B具有d个数字的范围AB ,您将表格构建为1到d -1位数,然后将范围AB拆分为10,100,1000 ...的块,并查找表格,例如范围A = 782,B = 4321:
RANGE DIGITS TARGET LOOKUP VALUE
782 - 789 78x > 6 table[1][ 6] 3 <- incomplete range: 2-9
790 - 799 79x > 5 table[1][ 5] 4
800 - 899 8xx >13 table[2][13] 15
900 - 999 9xx >12 table[2][12] 21
1000 - 1999 1xxx >27 table[3][27] 0
2000 - 2999 2xxx >26 table[3][26] 1
3000 - 3999 3xxx >25 table[3][25] 4
4000 - 4099 40xx >24 impossible 0
4100 - 4199 41xx >23 impossible 0
4200 - 4299 42xx >22 impossible 0
4300 - 4309 430x >21 impossible 0
4310 - 4319 431x >20 impossible 0
4320 - 4321 432x >19 impossible 0 <- incomplete range: 0-1
--
48
Run Code Online (Sandbox Code Playgroud)
如果第一个和最后一个范围不完整(不是*0 - *9),请检查目标的起始值或结束值.(在示例中,2不大于6,因此所有3个重数都包含在范围内.)
生成查找表
对于1位十进制整数,大于值x的整数n是:
x: 0 1 2 3 4 5 6 7 8 9
n: 9 8 7 6 5 4 3 2 1 0
Run Code Online (Sandbox Code Playgroud)
如您所见,通过取n = 9- x可以很容易地计算出来.
对于2位十进制整数,其位数之和大于值x的整数n是:
x: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
n: 99 97 94 90 85 79 72 64 55 45 36 28 21 15 10 6 3 1 0
Run Code Online (Sandbox Code Playgroud)
对于3位十进制整数,其位数之和大于值x的整数n是:
x: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
n: 999 996 990 980 965 944 916 880 835 780 717 648 575 500 425 352 283 220 165 120 84 56 35 20 10 4 1 0
Run Code Online (Sandbox Code Playgroud)
每个这些序列都可以与前一个产生:开始与值10 d,然后从该值中减去在反向前面的序列(跳过第一零).例如,从序列中生成2位数的3位数序列,从10 3 = 1000开始,然后:
0. 1000 - 1 = 999
1. 999 - 3 = 996
2. 996 - 6 = 990
3. 990 - 10 = 980
4. 980 - 15 = 965
5. 965 - 21 = 944
6. 944 - 28 = 916
7. 916 - 36 = 880
8. 880 - 45 = 835
9. 835 - 55 = 780
10. 780 - 64 + 1 = 717 <- after 10 steps, start adding the previous sequence again
11. 717 - 72 + 3 = 648
12. 648 - 79 + 6 = 575
13. 575 - 85 + 10 = 500
14. 500 - 90 + 15 = 425
15. 425 - 94 + 21 = 352
16. 352 - 97 + 28 = 283
17. 283 - 99 + 36 = 220
18. 220 - 100 + 45 = 165 <- at the end of the sequence, keep subtracting 10^(d-1)
19. 165 - 100 + 55 = 120
20. 120 - 100 + 64 = 84
21. 84 - 100 + 72 = 56
22. 56 - 100 + 79 = 35
23. 35 - 100 + 85 = 20
24. 20 - 100 + 90 = 10
25. 10 - 100 + 94 = 4
26. 4 - 100 + 97 = 1
27. 1 - 100 + 99 = 0
Run Code Online (Sandbox Code Playgroud)
顺便说一下,如果使用7以外的值定义"重"数,则可以使用相同的表.
代码示例
下面是一个演示该方法的Javascript代码片段(我不会说Java).它是非常不优化的,但它在0到100,000,000的例子中不到0.07ms.它也适用于7以外的权重.转换为Java,它应该轻松击败任何实际贯穿数字并检查其权重的算法.
function countHeavy(A, B, weight) {
var a = decimalDigits(A), b = decimalDigits(B); // create arrays
while (a.length < b.length) a.push(0); // add leading zeros
var digits = b.length, table = weightTable(); // create table
var count = 0, diff = B - A + 1, d = 0; // calculate range
for (var i = digits - 1; i >= 0; i--) if (a[i]) d = i; // lowest non-0 digit
while (diff) { // increment a until a=b
while (a[d] == 10) { // move to higher digit
a[d++] = 0;
++a[d]; // carry 1
}
var step = Math.pow(10, d); // value of digit d
if (step <= diff) {
diff -= step;
count += increment(d); // increment digit d
}
else --d; // move to lower digit
}
return count;
function weightTable() { // see above for details
var t = [[],[9,8,7,6,5,4,3,2,1,0]];
for (var i = 2; i < digits; i++) {
var total = Math.pow(10, i), final = total / 10;
t[i] = [];
for (var j = 9 * i; total > 0; --j) {
if (j > 9) total -= t[i - 1][j - 10]; else total -= final;
if (j < 9 * (i - 1)) total += t[i - 1][j];
t[i].push(total);
}
}
return t;
}
function increment(d) {
var sum = 0, size = digits;
for (var i = digits - 1; i >= d; i--) {
if (a[i] == 0 && i == size - 1) size = i; // count used digits
sum += a[i]; // sum of digits
}
++a[d];
var target = weight * size - sum;
if (d == 0) return (target < 0) ? 1 : 0; // if d is lowest digit
if (target < 0) return table[d][0] + 1; // whole range is heavy
return (target > 9 * d) ? 0 : table[d][target]; // use look-up table
}
function decimalDigits(n) {
var array = [];
do {array.push(n % 10);
n = Math.floor(n / 10);
} while (n);
return array;
}
}
document.write("0 → 100,000,000 = " + countHeavy(0, 100000000, 7) + "<br>");
document.write("782 → 4321 = " + countHeavy(782, 4321, 7) + "<br>");
document.write("782 → 4321 = " + countHeavy(782, 4321, 5) + " (weight: 5)");Run Code Online (Sandbox Code Playgroud)