TensorFlow - L2丢失正则化,如何应用于所有权重,而不仅仅是最后一个?

Mak*_*ich 62 machine-learning neural-network regularized deep-learning tensorflow

我正在玩一个ANN,这是Udacity DeepLearning课程的一部分.

我有一个任务,涉及使用L2丢失将一个隐藏的ReLU层引入网络.我想知道如何正确地引入它,以便所有权重都受到惩罚,而不仅仅是输出层的权重.

没有概括的网络代码位于帖子的底部(实际运行培训的代码超出了问题的范围).

引入L2的明显方法是用这样的方法替换损失计算(如果beta为0.01):

loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(out_layer, tf_train_labels) + 0.01*tf.nn.l2_loss(out_weights))
Run Code Online (Sandbox Code Playgroud)

但在这种情况下,它会考虑输出层权重的值.我不确定,我们如何正确地惩罚进入隐藏的ReLU层的权重.是否需要它或引入输出层的惩罚将以某种方式保持隐藏的权重也检查?

#some importing
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range

#loading data
pickle_file = '/home/maxkhk/Documents/Udacity/DeepLearningCourse/SourceCode/tensorflow/examples/udacity/notMNIST.pickle'

with open(pickle_file, 'rb') as f:
  save = pickle.load(f)
  train_dataset = save['train_dataset']
  train_labels = save['train_labels']
  valid_dataset = save['valid_dataset']
  valid_labels = save['valid_labels']
  test_dataset = save['test_dataset']
  test_labels = save['test_labels']
  del save  # hint to help gc free up memory
  print('Training set', train_dataset.shape, train_labels.shape)
  print('Validation set', valid_dataset.shape, valid_labels.shape)
  print('Test set', test_dataset.shape, test_labels.shape)


#prepare data to have right format for tensorflow
#i.e. data is flat matrix, labels are onehot

image_size = 28
num_labels = 10

def reformat(dataset, labels):
  dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
  # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
  labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
  return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)


#now is the interesting part - we are building a network with
#one hidden ReLU layer and out usual output linear layer

#we are going to use SGD so here is our size of batch
batch_size = 128

#building tensorflow graph
graph = tf.Graph()
with graph.as_default():
      # Input data. For the training data, we use a placeholder that will be fed
  # at run time with a training minibatch.
  tf_train_dataset = tf.placeholder(tf.float32,
                                    shape=(batch_size, image_size * image_size))
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)

  #now let's build our new hidden layer
  #that's how many hidden neurons we want
  num_hidden_neurons = 1024
  #its weights
  hidden_weights = tf.Variable(
    tf.truncated_normal([image_size * image_size, num_hidden_neurons]))
  hidden_biases = tf.Variable(tf.zeros([num_hidden_neurons]))

  #now the layer itself. It multiplies data by weights, adds biases
  #and takes ReLU over result
  hidden_layer = tf.nn.relu(tf.matmul(tf_train_dataset, hidden_weights) + hidden_biases)

  #time to go for output linear layer
  #out weights connect hidden neurons to output labels
  #biases are added to output labels  
  out_weights = tf.Variable(
    tf.truncated_normal([num_hidden_neurons, num_labels]))  

  out_biases = tf.Variable(tf.zeros([num_labels]))  

  #compute output  
  out_layer = tf.matmul(hidden_layer,out_weights) + out_biases
  #our real output is a softmax of prior result
  #and we also compute its cross-entropy to get our loss
  loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(out_layer, tf_train_labels))

  #now we just minimize this loss to actually train the network
  optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

  #nice, now let's calculate the predictions on each dataset for evaluating the
  #performance so far
  # Predictions for the training, validation, and test data.
  train_prediction = tf.nn.softmax(out_layer)
  valid_relu = tf.nn.relu(  tf.matmul(tf_valid_dataset, hidden_weights) + hidden_biases)
  valid_prediction = tf.nn.softmax( tf.matmul(valid_relu, out_weights) + out_biases) 

  test_relu = tf.nn.relu( tf.matmul( tf_test_dataset, hidden_weights) + hidden_biases)
  test_prediction = tf.nn.softmax(tf.matmul(test_relu, out_weights) + out_biases)
Run Code Online (Sandbox Code Playgroud)

PhA*_*ABC 99

这样做的简短且可扩展的方式是:

vars   = tf.trainable_variables() 
lossL2 = tf.add_n([ tf.nn.l2_loss(v) for v in vars ]) * 0.001
Run Code Online (Sandbox Code Playgroud)

这基本上总结了所有可训练变量的l2_loss.您还可以创建一个字典,其中只指定要添加到成本中的变量,并使用上面的第二行.然后,您可以使用softmax交叉熵值添加lossL2,以计算您的总损失.

编辑:如Piotr Dabkowski所述,上述代码也将规范偏见.这可以通过在第二行添加if语句来避免;

lossL2 = tf.add_n([ tf.nn.l2_loss(v) for v in vars
                    if 'bias' not in v.name ]) * 0.001
Run Code Online (Sandbox Code Playgroud)

这可以用于排除其他变量.

  • 请注意,对于列表理解选择偏移量,它取决于tf变量的实际/名称/,因此如果你没有在其中调用带有"偏差"的东西,那么示例将不会选择它. (4认同)

kev*_*man 56

hidden_weights,hidden_biases,out_weights,和out_biases都是你所创建的模型参数.您可以将L2正则化添加到所有这些参数,如下所示:

loss = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    logits=out_layer, labels=tf_train_labels)) +
    0.01*tf.nn.l2_loss(hidden_weights) +
    0.01*tf.nn.l2_loss(hidden_biases) +
    0.01*tf.nn.l2_loss(out_weights) +
    0.01*tf.nn.l2_loss(out_biases))
Run Code Online (Sandbox Code Playgroud)

  • 你不应该规范偏见,只有权重. (62认同)
  • 嗨,为什么我们应该将l2正则化添加到偏差中,我认为没有必要将l2正则化添加到偏差项. (8认同)
  • @AlexanderYau:你是对的:"......出于这些原因,我们通常不会在正规化时包含偏见术语"(见[here](http://neuralnetworksanddeeplearning.com/chap3.html)) (4认同)

小智 17

事实上,我们通常不会规范偏见条款(截取).所以,我去:

loss = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    logits=out_layer, labels=tf_train_labels)) +
    0.01*tf.nn.l2_loss(hidden_weights) +
    0.01*tf.nn.l2_loss(out_weights))
Run Code Online (Sandbox Code Playgroud)

通过惩罚截距项,当截距被添加到y值时,将导致改变y值,向截距添加常数c.拥有与否不会改变结果,但会进行一些计算