比较Pandas查找时间

Bru*_*cci 19 python performance pandas

在对Pandas(0.17.1)DataFrame上的各种类型的查找进行实验时,我只剩下几个问题.

这是设置......

import pandas as pd
import numpy as np
import itertools

letters = [chr(x) for x in range(ord('a'), ord('z'))]
letter_combinations = [''.join(x) for x in itertools.combinations(letters, 3)]

df1 = pd.DataFrame({
        'value': np.random.normal(size=(1000000)), 
        'letter': np.random.choice(letter_combinations, 1000000)
    })
df2 = df1.sort_values('letter')
df3 = df1.set_index('letter')
df4 = df3.sort_index()
Run Code Online (Sandbox Code Playgroud)

所以df1看起来像这样......

print(df1.head(5))


>>>
  letter     value
0    bdh  0.253778
1    cem -1.915726
2    mru -0.434007
3    lnw -1.286693
4    fjv  0.245523
Run Code Online (Sandbox Code Playgroud)

以下是测试查找性能差异的代码...

print('~~~~~~~~~~~~~~~~~NON-INDEXED LOOKUPS / UNSORTED DATASET~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
%timeit df1[df1.letter == 'ben']
%timeit df1[df1.letter == 'amy']
%timeit df1[df1.letter == 'abe']

print('~~~~~~~~~~~~~~~~~NON-INDEXED LOOKUPS / SORTED DATASET~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
%timeit df2[df2.letter == 'ben']
%timeit df2[df2.letter == 'amy']
%timeit df2[df2.letter == 'abe']

print('~~~~~~~~~~~~~~~~~~~~~INDEXED LOOKUPS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
%timeit df3.loc['ben']
%timeit df3.loc['amy']
%timeit df3.loc['abe']

print('~~~~~~~~~~~~~~~~~~~~~SORTED INDEXED LOOKUPS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
%timeit df4.loc['ben']
%timeit df4.loc['amy']
%timeit df4.loc['abe']
Run Code Online (Sandbox Code Playgroud)

结果......

~~~~~~~~~~~~~~~~~NON-INDEXED LOOKUPS / UNSORTED DATASET~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 loops, best of 3: 59.7 ms per loop
10 loops, best of 3: 59.7 ms per loop
10 loops, best of 3: 59.7 ms per loop
~~~~~~~~~~~~~~~~~NON-INDEXED LOOKUPS / SORTED DATASET~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 loops, best of 3: 192 ms per loop
10 loops, best of 3: 192 ms per loop
10 loops, best of 3: 193 ms per loop
~~~~~~~~~~~~~~~~~~~~~INDEXED LOOKUPS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The slowest run took 4.66 times longer than the fastest. This could mean that an intermediate result is being cached 
10 loops, best of 3: 40.9 ms per loop
10 loops, best of 3: 41 ms per loop
10 loops, best of 3: 40.9 ms per loop
~~~~~~~~~~~~~~~~~~~~~SORTED INDEXED LOOKUPS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The slowest run took 1621.00 times longer than the fastest. This could mean that an intermediate result is being cached 
1 loops, best of 3: 259 µs per loop
1000 loops, best of 3: 242 µs per loop
1000 loops, best of 3: 243 µs per loop
Run Code Online (Sandbox Code Playgroud)

问题...

  1. 很明显为什么对排序索引的查找速度要快得多,二进制搜索得到O(log(n))性能与O(n)进行全阵列扫描.但是,为什么排序的非索引df2SLOWER上的查找比未排序的非索引列上的查找df1

  2. 怎么了The slowest run took x times longer than the fastest. This could mean that an intermediate result is being cached.当然,结果没有被缓存.是因为创建的索引是懒惰的,并且在需要之前实际上没有重新编制索引?这可以解释为什么它只是第一次打电话给.loc[].

  3. 为什么默认情况下不对索引进行排序?这种固定成本可能太多了?

unu*_*tbu 11

这些%timeit的差异导致

In [273]: %timeit df1[df1['letter'] == 'ben']
10 loops, best of 3: 36.1 ms per loop

In [274]: %timeit df2[df2['letter'] == 'ben']
10 loops, best of 3: 108 ms per loop
Run Code Online (Sandbox Code Playgroud)

也显示在纯粹的NumPy平等比较中:

In [275]: %timeit df1['letter'].values == 'ben'
10 loops, best of 3: 24.1 ms per loop

In [276]: %timeit df2['letter'].values == 'ben'
10 loops, best of 3: 96.5 ms per loop
Run Code Online (Sandbox Code Playgroud)

在引擎盖下,Pandas df1['letter'] == 'ben' 调用一个Cython函数 ,它循环遍历底层NumPy数组的值, df1['letter'].values.它基本上做同样的事情, df1['letter'].values == 'ben'但对NaNs的处理不同.

此外,请注意,df1['letter']按顺序访问项目可以比执行相同操作更快地完成df2['letter']:

In [11]: %timeit [item for item in df1['letter']]
10 loops, best of 3: 49.4 ms per loop

In [12]: %timeit [item for item in df2['letter']]
10 loops, best of 3: 124 ms per loop
Run Code Online (Sandbox Code Playgroud)

这三组%timeit测试中每一组的时间差异大致相同.我认为这是因为他们都有同样的原因.

由于letter列包含字符串,则NumPy的阵列df1['letter'].valuesdf2['letter'].values具有D型object,因此它们保持指针指向任意Python对象的存储位置(在这种情况下的字符串).

考虑存储在DataFrame中的字符串的内存位置,df1以及 df2.在CPython中,id返回对象的内存位置:

memloc = pd.DataFrame({'df1': list(map(id, df1['letter'])),
                       'df2': list(map(id, df2['letter'])), })

               df1              df2
0  140226328244040  140226299303840
1  140226328243088  140226308389048
2  140226328243872  140226317328936
3  140226328243760  140226230086600
4  140226328243368  140226285885624
Run Code Online (Sandbox Code Playgroud)

df1(在前十几个之后)中的字符串倾向于在内存中顺序出现,而排序导致字符串df2(按顺序排列)分散在内存中:

In [272]: diffs = memloc.diff(); diffs.head(30)
Out[272]: 
         df1         df2
0        NaN         NaN
1     -952.0   9085208.0
2      784.0   8939888.0
3     -112.0 -87242336.0
4     -392.0  55799024.0
5     -392.0   5436736.0
6      952.0  22687184.0
7       56.0 -26436984.0
8     -448.0  24264592.0
9      -56.0  -4092072.0
10    -168.0 -10421232.0
11 -363584.0   5512088.0
12      56.0 -17433416.0
13      56.0  40042552.0
14      56.0 -18859440.0
15      56.0 -76535224.0
16      56.0  94092360.0
17      56.0  -4189368.0
18      56.0     73840.0
19      56.0  -5807616.0
20      56.0  -9211680.0
21      56.0  20571736.0
22      56.0 -27142288.0
23      56.0   5615112.0
24      56.0  -5616568.0
25      56.0   5743152.0
26      56.0 -73057432.0
27      56.0  -4988200.0
28      56.0  85630584.0
29      56.0  -4706136.0
Run Code Online (Sandbox Code Playgroud)

大多数字符串df1相隔56个字节:

In [14]: 
In [16]: diffs['df1'].value_counts()
Out[16]: 
 56.0           986109
 120.0           13671
-524168.0          215
-56.0                1
-12664712.0          1
 41136.0             1
-231731080.0         1
Name: df1, dtype: int64

In [20]: len(diffs['df1'].value_counts())
Out[20]: 7
Run Code Online (Sandbox Code Playgroud)

相比之下,弦乐df2遍布整个地方:

In [17]: diffs['df2'].value_counts().head()
Out[17]: 
-56.0     46
 56.0     44
 168.0    39
-112.0    37
-392.0    35
Name: df2, dtype: int64

In [19]: len(diffs['df2'].value_counts())
Out[19]: 837764
Run Code Online (Sandbox Code Playgroud)

当这些对象(字符串)按顺序位于内存中时,可以更快地检索它们的值.这就是为什么执行的相等比较 df1['letter'].values == 'ben'可以比那些更快地完成df2['letter'].values == 'ben'.查找时间较短.

此内存访问问题还解释了为什么列的%timeit结果没有差异 value.

In [5]: %timeit df1[df1['value'] == 0]
1000 loops, best of 3: 1.8 ms per loop

In [6]: %timeit df2[df2['value'] == 0]
1000 loops, best of 3: 1.78 ms per loop
Run Code Online (Sandbox Code Playgroud)

df1['value']并且df2['value']是dtype的NumPy数组float64.与对象数组不同,它们的值在内存中连续打包在一起.排序df1df2 = df1.sort_values('letter')原因中的值df2['value']重新排序,但由于值被复制到一个新的NumPy的阵列,所述值位于顺序在存储器中.因此,访问值df2['value']可以像在那里一样快df1['value'].


chr*_*isb 5

(1) pandas目前不知道列的排序.
如果您想利用排序数据,可以使用df2.letter.searchsorted See @ unutbu的答案来解释实际导致时间差异的原因.

(2)位于索引下面的哈希表是懒惰创建的,然后缓存.